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ABSTRACT
As Spark becomes a common big data analytics platform, its grow-

ing complexity makes automatic tuning of numerous parameters

critical for performance. Our work on Spark parameter tuning is

particularly motivated by two recent trends: Spark’sAdaptive Query
Execution (AQE) based on runtime statistics, and the increasingly

popular Spark cloud deployments that make cost-performance rea-

soning crucial for the end user. This paper presents our design of

a Spark optimizer that controls all tunable parameters (collectively
called a “configuration”) of each query in the new AQE architecture to
explore its performance benefits and, at the same time, casts the tun-
ing problem in the theoretically sound multi-objective optimization
setting to better adapt to user cost-performance preferences. To this
end, we propose a novel hybrid compile-time/runtime approach to

multi-granularity tuning of diverse, correlated Spark parameters,

as well as a suite of modeling and optimization techniques to solve

the tuning problem in the MOO setting while meeting the strin-

gent time constraint of 1-2 seconds for cloud use. Our evaluation

results using the TPC-H and TPC-DS benchmarks demonstrate

the superior performance of our approach: (𝑖) When prioritizing

latency, it achieves an average of 61% and 64% reduction for TPC-H

and TPC-DS, respectively, under the solving time of 0.62-0.83 sec,

outperforming the most competitive MOO method that reduces

only 18-25% latency with high solving time of 2.4-15 sec. (𝑖𝑖) When

shifting preferences between latency and cost, our approach dom-

inates the solutions from alternative methods by a wide margin,

exhibiting superior adaptability to varying preferences.

1 INTRODUCTION
Big data query processing has become an integral part of enterprise

businesses and many platforms have been developed for this pur-

pose [3, 5, 6, 11, 14, 31, 36, 44, 49, 56, 57, 62, 63]. As these systems

are becoming increasingly complex, parameter tuning of big data

systems has recently attracted a lot of research attention [21, 23–

25, 41, 55]. Take Apache Spark for example. It offers over 180 pa-

rameters for governing a mixed set of decisions, including resource

allocation, the degree of parallelism, IO and shuffling behaviors,

and SQL-related decisions based on parametric query optimization

rules. Our work on parameter tuning of big data query systems is

particularly motivated by two recent trends:

Adaptive Query Execution. Big data query processing systems

have undergone architectural changes that distinguish them sub-

stantially from traditional DBMSs for the task of parameter tuning.

A notable feature is that a SQL query is compiled into a physical plan

composed of query stages and a query stage is the granularity of

scheduling and execution. The stage-based query execution model

enables the system to observe the precise statistics of the completed

stages before planning the next stage. The recent work [28] has

explored this opportunity to optimize the resource allocation of

each query stage, but is limited to two (CPU and memory) resource

parameters of each parallel instance of a stage. Recently, Spark has

taken a step further to introduce Adaptive Query Execution (AQE),

which enables the logical query plan to be re-optimized upon the

completion of each query stage and the query stages produced from

the newly generated physical plan to be re-optimized as well, both

based on parametric rules. Spark, however, does not support param-

eter tuning itself and instead, executes AQE based on the default

or pre-specified configuration of the parameters, hence suffering

from suboptimal performance of AQE when the parameters are set

to inappropriate values. On the other hand, recent work on Spark

tuning [21, 23–25, 41, 55] has limited itself to the traditional set-

ting that the parameters are set at query submission time and then

fixed throughout query execution, hence missing the opportunity

of exploring AQE to improve the physical query plan.

Cost-performance reasoning in cloud deployment. As big data

query processing is increasingly deployed in the cloud, parameter

tuning in the form of cost-performance optimization [28, 37] has

become more critical than ever to end users. Prior work [23, 59, 66]

has used fixed weights to combine multiple objectives into a single
objective (SO) and solve the SO problem to return one solution.

However, the optimization community has established theory [30]

pointing out that solving such a SO problem is unlikely to return a

solution that balances the cost-performance in the objective space

as the specified weights intend to express (as we will demonstrate

in this work). The theoretically sound approach is to treat it as a

multi-objective optimization (MOO) problem [8, 30, 33, 34], compute

the Pareto optimal set, and return one solution from the Pareto set

that best matches the user preference as reflected by the weights

set on the cost-performance objectives [28, 41].

Therefore, our work in this paper aims to design a Spark optimizer
that controls all tunable parameters (collectively called a “configu-
ration”) of each Spark application in the new architecture of adap-
tive query execution to explore its performance benefits and, at the
same time, casts the tuning problem in the theoretically sound multi-
objective optimization setting to better adapt to user cost-performance
needs. This Optimizer for Parameter Tuning (OPT) complements

Spark’s current Cost-based and Rule-based Optimization (CRO)

of query plans, where the optimization rules use default or pre-

specified values of Spark parameters. Our OPT can be implemented

as a plugin in the current Spark optimizer framework and runs each

time a query is submitted to Spark for execution.

Designing the optimizer for parameter tuning as defined above

faces a few salient challenges:

Complex control of amixed parameter space. One may won-

der whether parameter tuning can be conducted solely at runtime,

as an augmented AQE process. Unfortunately, Spark parameter

tuning is more complex than that due to the need to control a
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mixed parameter space. More specifically, Spark parameters can be

divided into three categories (see Table 1 for examples): the context

parameters, 𝜽𝑐 , initialize the Spark context by specifying (shared)

resources to be allocated and later governing runtime behaviors

such as shuffling; the query plan parameters, 𝜽𝑝 , govern the trans-

lation from the logical to physical query plan; and the query stage

parameters, 𝜽𝑠 , govern the optimization of the query stages in the

physical plan. The 𝜽𝑝 and 𝜽𝑠 parameters are best tuned at runtime

to benefit from precise statistics, but they are strongly correlated

with the context parameters, 𝜽𝑐 , which control shared resources

and must be set at query submission time to initialize the Spark

context. How to best tune these mixed parameters, correlated but

under different controls in the query lifetime, is a nontrivial issue.

StringentMOO Solving time for cloud use. The second daunt-
ing challenge is solving the MOO problem over a large parameter

space in the complex Spark environment while obeying stringent

time constraints for cloud use. In particular, the solving time of

MOO must be kept under the time constraint of 1-2 seconds to

avoid delaying the launch of a Spark application in cloud execution,

as recently emphasized for serverless computing [28]. Prior work

on MOO for Spark tuning [41] has reported the running time of the

Evolutional (Evo) method [8] to be about 5 seconds for query-level

control of the most important 12 Spark parameters. However, when

we increase the parameter space to allow the 𝜽𝑝 parameters to be

tuned separately for different subqueries, the time cost of Evo goes

up quickly, exceeding 60 seconds for some TPC-H queries, which

is unacceptable for cloud use.

To address the above challenges, we propose a novel approach to

multi-granularity tuning of mixed Spark parameters and a suite of

modeling and optimization techniques to solve the tuning problem

in the MOO setting efficiently and effectively. More specifically, our

contributions include the following:

1. A hybrid approach to multi-granularity tuning (Sec-

tion 3): Our OPT is designed for multi-granularity tuning of a

mixed parameter space: while the context parameters 𝜽𝑐 config-

ure the Spark context at the query level, we tune the 𝜽𝑝 and 𝜽𝑠
parameters at the fine-grained subquery level and query stage level,
respectively, to maximize the performance gains. To cope with the

different control mechanisms that Spark provides for these parame-

ters, we introduce a new hybrid compile-time/runtime optimization

approach to multi-granularity tuning: the compile-time optimiza-

tion finds the optimal 𝜽 ∗𝑐 , by leveraging the correlation among 𝜽𝑐
and fine-grained {𝜽𝑝 } and {𝜽𝑠 }, to construct an ideal Spark con-

text for query execution. Then the runtime optimization adjusts

fine-grained {𝜽𝑝 } and {𝜽𝑠 } based on the precise statistics of the

completed stages. Both compile-time and runtime optimization are

cast in the setting of multi-objective optimization.

2. Modeling (Section 4): Solving the MOO problem for parame-

ter tuning requires precise models for the objective functions used.

Our hybrid approach to parameter tuning requires accurate mod-

els for both compile-time and runtime optimization, where the

query plans have different representations in these two phases.

The Spark execution environment shares resources among parallel

stages, which further complicates the modeling problem. To ad-

dress all of these issues, we introduce a modeling framework that

combines a Graph Transformer Network (GTN) embedder of query

plans and a regression model that captures the interplay of the tun-

able parameters (decision variables) and critical contextual factors

(non-decision variables) such as query and data characteristics and

resource contention. We further provide a suite of techniques that

derive both compile-time and runtime models in this framework.

3. MOO Algorithms (Section 5): Solving the MOO problem for

multi-granularity tuning needs to conquer the high-dimensionality

of the parameter space while obeying the time constraint, which is

especially the case at compile-time when we consider the correla-

tion of all the parameters together. We introduce a novel approach

for compile-time optimization, named Hierarchical MOO with Con-

straints (HMOOC): it breaks the optimization problem of a large

parameter space into a set of smaller problems, one for each sub-

query, but subject to the constraint that all subquery-level problems

use the same Spark context parameters, 𝜽𝑐 , which must be set at

the query level to enable runtime resource sharing. Since these

subproblems are not independent, we devise a host of techniques

to prepare a sufficiently large set of candidate solutions for the

subproblems and efficiently aggregate them to build global Pareto

optimal solutions. Then our runtime optimization runs as part of

AQE to adapt 𝜽𝑝 and 𝜽𝑠 effectively based on precise statistics.

We performed an extensive evaluation of our modeling andMOO

techniques using the TPC-H and TPC-DS benchmarks. (1) Model-
ing: Our compile-time and runtime models consistently provide

accurate predictions for Spark queries, with the weighted mean

absolute percentage error between 13-28% in latency and 0.2-10.7%

in IO cost. (2) MOO algorithms: Our compile-time MOO algorithm

(HMOOC) for fine-grained parameter tuning outperforms existing

MOO methods with 7.9%-81.7% improvement in hypervolume (the

dominated space covered by the Pareto front) and 81.8%-98.3% re-

duction in solving time. (3) End-to-end evaluation: We further add

runtime optimization, denoted as HMOOC+, and compare its rec-

ommended configuration with those returned by other competitive

solutions. When prioritizing latency, HMOOC+ achieves an aver-

age of 61% and 64% reduction for TPC-H and TPC-DS, respectively,

and an average solving time of 0.62-0.83s, outperforming the most

competitive MOO method, which only reduces 18-25% latency with

high solving time of 2.4-15s. When shifting preferences between

latency and cost, HMOOC+ dominates the only available efficient

method, single-objective weighted sum, in both latency and cost

reductions, exhibiting superior adaptability to varying preferences.

2 RELATEDWORK

DBMS tuning. Our problem is related to a body of work on perfor-

mance tuning for DBMSs. Most DBMS tuning systems employ an

offline, iterative tuning session for each workload [48, 51, 59, 60],

which can take long to run (e.g., 15-45 minutes [48, 59]). Otter-

tune [48] builds a predictivemodel for each query by leveraging sim-

ilarities to past queries, and runs Gaussian Process (GP) exploration

to try other configurations to reduce query latency. ResTune [60]

accelerates the GP tuning process (with cubic complexity in the

number of training samples) by building a meta-learning model to

weigh appropriately the base learners trained for individual tun-

ing tasks. CDBTune [59] and QTune [23] use Deep Reinforcement

Learning (RL) to predict the reward of a configuration, which is

a scalar value composed of different objectives (e.g., latency and
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throughput) based on fixed weights, and explores new configura-

tions to optimize the reward. These methods can take many iter-

ations to achieve good performance [55]. UDO [51] is an offline

RL-based tuner for both database physical design choices and pa-

rameter settings. Unlike the prior work, OnlineTuner [61] tunes

workloads in the online setting by exploring a contextual GP to

adapt to changing contexts and safe exploration strategies.

Our work on parameter tuning aims to be a plugin of the Spark

optimizer, invoked on-demand for each arriving query, hence dif-

ferent from all the tuning systems that require launching a separate

tuning session for each target workload. Further, none of the above

methods can be applied to adaptive, fine-grained runtime optimiza-

tion of Spark jobs and are limited to single-objective optimization.

Tuning of big data systems. Among search-based methods, Best-

Config [66] searches for good configurations by dividing high-

dimensional configuration space into subspaces based on samples,

but it cold-starts each tuning request. ClassyTune [65] solves the

optimization problem by classification, which cannot be easily ex-

tended to the MOO setting. A new line of work has considered pa-

rameter tuning for Spark, specifically, for recurring workloads that

are observed repeatedly under different configurations. ReIM [21]

addresses online tuning of memory management decisions by guid-

ing the GP approach using manually-derived memory models. Lo-

cat [55] is a data-aware GP-based approach for tuning Spark queries

that repeatedly run with the input data size changing over time.

While it is shown to outperform prior solutions such as Tuneful [10],

ReIM [21], and QTune [23] in efficiency, it still needs hours to com-

plete. Li et al. [24] further tune periodic Spark jobs using a GP with

safe regions and meta-learning from the history. LITE[25] tunes

parameters of non-SQL Spark applications and relies on stage code

analysis to derive predictive models, which is impractical as the

cloud providers usually have no access to application code due to

privacy constraints. These solutions do not suit our problem as we

cannot afford to launch a separate tuning session for each query or

target workload, and these methods lack support of adaptive run-

time optimization and are limited to single-objective optimization.

Resource optimization in big data systems. In cluster comput-

ing, a resource optimizer (RO) determines the optimal resource

configuration on demand and with low latency as jobs are submitted.

Morpheus [17] codifies user expectations as multiple Service-Level

Objectives (SLOs) and enforces them using scheduling methods.

However, its optimization focuses on system utilization and pre-

dictability, but not cost and latency of Spark queries. PerfOrator [40]

optimizes latency via an exhaustive search of the solution space

while calling its model for predicting the performance of each

solution. WiseDB [29] manages cloud resources based on a deci-

sion tree trained on minimum-cost schedules of sample workloads.

ReLocag[15] presents a predictor to find the near-optimal number

of CPU cores to minimize job completion time. Recent work [22]

proposes a heuristic-based model to recommend a cloud instance

that achieves cost optimality for OLAP queries. This line of work

addresses a smaller set of tunable parameters (only for resource

allocation) than the general problem of Spark tuning with a large

parameter space, and is limited to single-objective optimization.

Multi-objective optimization (MOO) computes a set of solutions

that are not dominated by any other configuration in all objectives,
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Figure 1: Spark parameters provide mixed control through query
compilation and execution

aka, the Pareto-optimal set (or Pareto front). Theoretical MOO solu-

tions suffer from various performance issues in cloud optimization:

Weighted Sum [30] is known to have poor coverage of the Pareto
front [33]. Normalized Constraints [34] lacks in efficiency due to

repeated recomputation to return more solutions. Evolutionary

methods [8] approximately compute a Pareto set but suffer from

inconsistent solutions. Multi-objective Bayesian Optimization [4, 13]

extends the Bayesian approach to modeling an unknown function

with an acquisition function for choosing the next point(s) that are

likely to be Pareto optimal. But it is shown to take long to run [41]

and hence lacks the efficiency required by a cloud optimizer.

In the DB literature, MOO for SQL queries [16, 19, 45–47] finds

Pareto-optimal query plans by efficiently searching through a large

set of plans. The problem, essentially a combinatorial one, differs

fromMOO for parameter tuning, which is a numerical optimization

problem. TEMPO [43] considers multiple SLOs of SQL queries and

guarantees max-min fairness when they cannot be all met. MOO

for workflow scheduling [19] assigns operators to containers to

minimize total running time and money cost, but is limited to

searching through 20 possible containers and solving a constrained

optimization for each option.

The closest work to ours is UDAO [41, 58] that tunes Spark con-

figurations to optimize for multiple objectives. It Progressive Frontier
(PF) method [41] provides the MOO solution for spark parameter

tuning with good coverage, efficiency, and consistency. However,

the solution is limited to coarse-grained query-level control of

parameters. Lyu et al. extended the MOO solution to serverless

computing [28] by controlling machine placement and resource al-

location to parallel tasks of each query stage. However, its solution

only guarantees Pareto optimality for each individual stage, but

not the entire query (with potentially many stages).

3 PROBLEM STATEMENT AND OVERVIEW
In this section, we formally define our Spark parameter tuning

problem and provide an overview of our approach.

3.1 Background on Spark
Apache Spark [57] is an open-source distributed computing system

for large-scale data processing and analytics. The core concepts of

Spark include jobs, representing computations initiated by actions,

and stages, which are organized based on shuffle dependencies,
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Table 1: (Selected) Spark parameters in three categories
𝜽𝑐 Context Parameters

𝑘1 spark.executor.cores
𝑘2 spark.executor.memory
𝑘3 spark.executor.instances
... ...

𝜽𝑝 Logical Query Plan Parameters

𝑠1 spark.sql.adaptive.advisoryPartitionSizeInBytes
𝑠3 spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold
𝑠4 spark.sql.adaptive.autoBroadcastJoinThreshold
𝑠5 spark.sql.shuffle.partitions
... ...

𝜽𝑠 Query Stage Parameters

𝑠10 spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor
... ...
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Figure 2: Query life cycle with an optimizer for parameter tuning

serving as boundaries that partition the computation graph of a

job. Stages comprise sets of tasks executed in parallel, each process-

ing a specific data partition. Executors, acting as worker processes,

execute these tasks on individual cluster nodes.

Spark SQL seamlessly integrates relational data processing into

the Spark framework [1]. A submitted SQL query undergoes pars-

ing, analysis, and optimization to form a logical query plan (LQP). In
subsequent physical planning, Spark takes the LQP and generates

one or more physical query plans (PQP), using physical operators
provided by the Spark execution engine. Then it selects one PQP

using a cost model, which mostly applies to join algorithms. The

physical planner also performs rule-based physical optimizations,

such as pipelining projections or filters into one map operation.

The PQP is then divided into a directed acyclic graph (DAG) of

query stages (QSs) based on the data exchange dependencies such

as shuffling or broadcasting. These query stages are executed in a

topological order, manifesting themselves as Spark jobs.

The execution of a Spark SQL query is configured by three cate-

gories of parameters, providing mixed control through the query

lifetime. Table 1 shows the selected parameters from each category,

and Figure 1 illustrates how they are applied in a query lifetime. As

Figure 1(a) shows, query plan parameters 𝜽𝑝 guide the transla-

tion from a logical query plan to a physical query plan, influencing

the decisions such as the bucket size for file reading and the join

algorithms through parametric optimization rules in the Spark op-

timizer. Figure 1(b) shows a concrete example of translating a LQP

to PQP, where each logical operator is instantiated by specific al-

gorithms (e.g., the first join is implemented by sorting both input

relations and then a merge join of them), additional exchange op-

erators are injected to realize data exchanges over the cluster, and

query stages are identified at the boundaries of exchange operators.

Further, query stage parameters 𝜽𝑠 control the optimization of

a query stage via parametric rules, such as rebalancing data par-

titions. Finally, context parameters 𝜽𝑐 , specified on the Spark

context, control shared resources, shuffle behaviors, and memory

management through the entire SQL execution. Although they are

in effect only during query execution, they must be specified at the

query submission time when the Spark context is initialized.

Adaptive Query Execution (AQE). Cardinality estimation [12,

26, 27, 38, 39, 42, 50, 52–54, 64] has been a long-standing issue that

impacts the effectiveness of the physical query plan. To address

this issue, Spark has recently introduced Adaptive Query Execution
(AQE) that enables runtime optimization based on precise statistics

collected from completed stages at runtime [9]. Figure 2 shows the

life cycle of an SQL query with the AQE mechanism turned on. At

compile time, a query is transformed to a logical query plan (LQP)

and then a physical query plan (PQP) through query optimization

(step 3). Query stages (QSs) that have their dependencies cleared

are then submitted for execution. During query runtime, Spark

iteratively updates LQP by collapsing completed QSs into dummy

operators with their observed cardinalities, leading to a so-called

collapsed query plan LQP (step 5), and re-optimizes the LQP (step

7) and the QSs (step 10), until all QSs are completed.

At the core of AQE are runtime optimization rules. Each rule

internally traverses the query operators and takes effect on them.

These rules are categorized as parametric and non-parametric, and

each parametric rule is configured by a subset of 𝜽𝑝 or 𝜽𝑠 parame-

ters. The details of those rules are left to Appendix B.1.2.

3.2 Effects of Parameter Tuning
We next consider the issue of Spark parameter tuning and present

initial observations that motivated our approach.

First, parameter tuning affects performance. While Spark sup-

ports AQE through parametric and non-parametric rules, it does

not support parameter tuning itself. The first observation that mo-

tivated our work is that tuning over a mixed parameter space is

crucial for Spark performance. Figure 3(a) shows that for TPCH-

Q9, by adding query-level tuning of parameters using prior MOO

work (MO-WS) [41] and then running AQE can already provide 13%

improvement over AQE using the default configuration.

Second, fine-grained control has performance benefits over query-
level coarse-grained control. All existing work on Spark parameter

tuning [21, 23–25, 41, 55] focuses on query-level control: that is,

one copy of 𝜽𝑐 , 𝜽𝑝 and 𝜽𝑠 parameters are applied to all operators

in the logical query plan and all the stages in the physical plan.

However, we observe that adapting 𝜽𝑝 for different collapsed query

plans and 𝜽𝑠 for different query stages offer additional performance

benefits, which were missed in all prior solutions. Figure 3(a) further

shows that adapting 𝜽𝑝 for different collapsed query plans during

runtime can lead to better performance than query-level tuning

of 𝜽𝑝 , further reducing the latency by 61%. Figure 3(b) shows the

simplified query structure of TPCH-Q9, including 6 scan operators

and 5 join operators. By adapting 𝜽𝑝 for different collapsed query

plans with observed statistics at runtime, we manage to construct a

new physical query plan with 3 broadcast hash joins (BHJs) and 2

shuffled hash joins (SHJs), outperforming the query-level 𝜽𝑝 choice

involving 2 sort-merge joins (SMJ) + 3 BHJs. Specifically, MO-WS



A Spark Optimizer for Adaptive, Fine-Grained Parameter Tuning

Default MO-WS HMOOC3+
0

50

100

150

Qu
er

y 
La

te
nc

y 
(s

) 145s
126s

37s

(a) Latency comparison

Scan1Scan2

Join1Scan3

Join2Scan4

Join3Scan5

Join4Scan6

Join5

Default MO-WS HMOOC3+

SMJ SMJ SHJ

SMJ SMJ BHJ

SMJ BHJ BHJ

BHJ BHJ BHJ

SMJ BHJ SHJ

SMJ: Sort-Merge Join
BHJ: Broadcast Hash Join
SHJ: Shuffled Merge Join

(b) Physical query plan choices

8 16 24 32 40 48 56 64
sql.shuffle.partitions (s5)

150
200
250
300

Qu
er

y 
La

te
nc

y 
(s

) Total Cores (k1 k3)
8 12 16 20

(c) Correlation in parameters

Figure 3: Profiling TPCH-Q9 (12 subQs) over different configurations

0.145 0.150 0.155 0.160 0.165 0.170
Cloud Cost ($)

10

20

30

40

Qu
er

y L
at

en
cy

 (s
) SO_[0,1]

SO_[0.1,0.9] to [1,0]

Pareto
Utopia
SO
WUN_[0.1,0.9]
WUN_[0.5,0.5]
WUN_[0.9,0.1]

Figure 4: MOO solutions for TPCH Q2

broadcasts up to 4.5G data in Join5 because it finalized its parameter

tuning at compile time with underestimated cardinality of Join4,

while our fine-grained tuning can derive a better plan by adapting

𝜽𝑝 to runtime statistics.

Third, the parameters that are best tuned at runtime based on
precise statistics are correlated with the parameters that must be set at
submission time. One may wonder whether fine-grained parameter

tuning can be conducted solely at runtime, as an augmented AQE

process. Unfortunately, Spark parameter tuning is more complex

than that: the 𝜽𝑝 and 𝜽𝑠 parameters are best tuned at runtime to

benefit from precise statistics, but they are strongly correlated with

the Spark context parameters, 𝜽𝑐 , which control shared resources

and must be set at query submission time when the Spark context

is initialized. For example, Figure 3(c) illustrates that the optimal

choice of 𝑠5 in 𝜽𝑝 is strongly correlated with the total number of

cores 𝑘1 ∗ 𝑘3 configured in 𝜽𝑐 . Many similar examples exist.

3.3 Our Parameter Tuning Approach
In this section, we introduce our parameter tuning approach that

is grounded in two principles:

3.3.1 Hybrid, Multi-Granularity Tuning. The goal of this paper is to
find the optimal configuration of all the 𝜽𝑝 , 𝜽𝑠 , and 𝜽𝑐 parameters of

each Spark query. A key feature of our approach ismulti-granularity
tuning:While the context parameters 𝜽𝑐 configure the Spark context
at the query level, we aim to tune the 𝜽𝑝 and 𝜽𝑠 parameters at fine

granularity to maximize the performance gains. More precisely, the

query plan parameters 𝜽𝑝 can be tuned for each collapsed query
plan, and the query stage parameters 𝜽𝑠 can be tuned for each query
stage in the physical query plan.

To address the correlation between the context parameters 𝜽𝑐 ,
which must be set at query submission time, and 𝜽𝑝 and 𝜽𝑠 param-

eters, which are best tuned during AQE with precise statistics, we

introduce a hybrid compile-time / runtime optimization approach,

as depicted by the red boxes in Figure 2. During compile-time,

our goal is to find the optimal 𝜽 ∗𝑐 , by leveraging the correlation

among all categories of parameters, to construct an ideal Spark

context for query execution. Our compile-time optimization uses

the cardinality estimates by Spark’s cost-based optimizer.

During runtime, the Spark context remains fixed, and our run-

time optimization runs as a plugin of AQE, invoked each time a new

query stage is completed and a new collapsed query plan (denoted

by LQP) is generated. Our runtime optimization adjusts 𝜽𝑝 for LQP

based on the precise statistics of the completed stages. Then AQE

applies 𝜽𝑝 to its parametric rules, as well as non-parametric ones,

to generate a new physical query plan (PQP). As new query stages

are produced in PQP, our runtime optimization kicks in to optimize

𝜽𝑠 parameters based on precise statistics. Then AQE applies para-

metric rules with the tuned 𝜽𝑠 , as well as non-parametric rules, to

optimize data partitions of these stages.

3.3.2 Multi-Objective Optimization. Targeting cloud use, we cast

our parameter tuning problem in the setting of multi-objective

optimization where the objectives can be query latency, IO cost,

and cloud cost in terms of CPU hours, memory hours, or a weighted

combination of CPU, memory, and IO resources. It subsumes the

solution of single-objective optimization and offers a theoretically

sound approach to adapting to user preferences.

Formally, a multi-objective optimization (MOO) problem aims

to minimize multiple objectives simultaneously, where the objec-

tives are represented as functions 𝒇 = (𝑓1, ..., 𝑓𝑘 ) on all the tunable

parameters 𝜽 .

Definition 3.1. Multi-Objective Optimization (MOO).

argmin

𝜽
𝒇 (𝜽 ) = [𝑓1 (𝜽 ), 𝑓2 (𝜽 ), . . . , 𝑓𝑘 (𝜽 )]

𝑠 .𝑡 .

𝜽 ∈ Σ ⊆ R𝑑
𝒇 (𝜽 ) ∈ Φ ⊆ R𝑘
𝐿𝑖 ≤ 𝑓𝑖 (𝜽 ) ≤ 𝑈𝑖 , 𝑖 = 1, ..., 𝑘

where 𝜽 is the configuration with 𝑑 parameters, Σ ⊆ R𝑑 denotes all

possible configurations, and Φ ⊆ R𝑘 denotes the objective space.

If an objective favors larger values, we add the minus sign to the

objective function to transform it into a minimization problem. In

general, the MOO problem leads to a set of solutions rather than a

single optimal solution.

Definition 3.2. Pareto Optimal Set. In the objective space Φ ⊆
R𝑘 , a point 𝑭 ′ Pareto-dominates another point 𝑭 ′′ iff∀𝑖 ∈ [1, 𝑘], 𝐹 ′

𝑖
≤

𝐹 ′′
𝑖
and ∃ 𝑗 ∈ [1, 𝑘], 𝐹 ′

𝑗
< 𝐹 ′′

𝑗
. For a given query, solving the MOO

problem leads to a Pareto Set (Front) F that includes all the Pareto

optimal solutions {(𝑭 , 𝜽 )}, where 𝑭 is a Pareto point in the objective

space Φ and 𝜽 is its corresponding configuration in Σ.

Figure 4 shows an example Pareto front in the 2D space of query

latency and cloud cost. We make a few observations: First, most

configurations, depicted by the grey dots, are dominated by the

Pareto optimal configurations, depicted by the red dots, in both

objectives. Hence, the MOO solution allows us to skip the vast set of

dominated configurations. Second, the Pareto optimal points them-

selves represent tradeoffs between the two competing objectives: if

the user desires lower latency, a higher cloud cost will be incurred,

and vice-versa. The optimizer can recommend one Pareto solution

based on the user preference, e.g., favoring latency to cost in peak

hours with weights 0.9 to 0.1 and vice-versa in off-peak hours. The

recommendation can be made based on the Weighted Utopia Near-

est (WUN) distance [41] of the Pareto points to the Utopia point 𝑼 ,
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which is the hypothetical (yet unattainable) optimum in all objec-

tives, marked by the orange dot in Figure 4. For example, we can

apply WUN to the Pareto set with the weight vector𝒘 = [0.9, 0.1]
for peak hours and return the one that minimizes the weighted

distance to the Utopia point. A few WUN recommendations for

different weight vectors are shown in Figure 4.

Furthermore, prior work [23, 59, 66] used fixed weights to com-

bine multiple objectives into a single objective (SO) and solve it

to return one solution, denoted as the SO-FW method. Note that

solving such a SO problem is different from computing the Pareto

set {𝑭𝑖 } and then returning one solution from them using WUN:

(SO:) argmin𝜽 𝒘 ·𝒇 (𝜽 ) ≠ (WUN on Pareto Set:) argmin𝐹
1
,...,𝐹𝑖 ,...

𝒘 · | |𝑭𝑖−𝑼 | |

In fact, one classical MOO algorithm is weighted sum (WS) [30]

that repeatedly applies different weight vectors to create a set of SO

problems and returns all of their solutions, denoted as the MO-WS
method, which subsumes SO-FW. It is known from the theory of

WS that (1) each solution to a SO problem is Pareto optimal, but

(2) trying different weights to create SO problems is unlikely to

return points that evenly cover the Pareto front, unless the objective

functions have a very specific shape [30]. Figure 4 demonstrates

that MO-WS gives poor coverage of the Pareto front: for TPCH-Q2, 11
SO problems generated from evenly spaced weight vectors return

only two distinct solutions (marked by the blue dots): 10 out of 11

SO problems lead to the same bottom point, hence offering poor

adaptability to the user preference. Increasing to 101 weight vectors

still returns only 3 distinct points. In contrast, our MOO algorithm

can offer a better-constructed Pareto front (the red line) at a lower

time cost, hence better adaptability.

We next define the MOO problem for Spark parameter tuning.

Definition 3.3. Multi-Objective Optimization for Spark SQL

argmin

𝜽𝑐 ,{𝜽𝒑 },{𝜽𝒔 }
𝒇 (𝜽𝑐 , {𝜽𝒑}, {𝜽𝒔 }) =


𝑓1 (LQP, 𝜽𝑐 , {𝜽𝒑}, {𝜽𝒔 }, 𝛼, 𝛽,𝛾)
...

𝑓𝑘 (LQP, 𝜽𝑐 , {𝜽𝒑}, {𝜽𝒔 }, 𝛼, 𝛽,𝛾)


𝑠 .𝑡 .

𝜽𝑐 ∈ Σ𝑐 ,
{𝜽𝒑} = {𝜽𝑝1, 𝜽𝑝2, ..., 𝜽𝑝𝑡 , ...},∀𝜽𝑝𝑡 ∈ Σ𝑝
{𝜽𝒔 } = {𝜽𝑠1, 𝜽𝑠2, ..., 𝜽𝑠𝑖 , ...},∀𝜽𝑠𝑖 ∈ Σ𝑠

where LQP denotes the logical query plan with operator cardinality

estimates, and 𝜽𝑐 , {𝜽𝒑}, {𝜽𝒔 } represent the decision variables con-
figuring Spark context, LQP transformations, and query stage (QS)

optimizations, respectively. More specifically, {𝜽𝒑} is the collec-
tion of all LQP parameters, and 𝜽𝑝𝑡 is a copy of 𝜽𝑝 for the 𝑡-th

transformation of the collapsed query plan LQP. Similarly, {𝜽𝒔 } is
the collection of QS parameters, and 𝜽𝑠𝑖 is a copy for optimizing

query stage 𝑖 . Σ𝑐 , Σ𝑝 , Σ𝑠 are the feasible space for 𝜽𝑐 , 𝜽𝑝 and 𝜽𝑠 , re-
spectively. Finally, 𝛼, 𝛽,𝛾 are the non-decision variables (not tunable,
but crucial factors that affect model performance), representing

the input characteristics, the distribution of partition sizes for data

exchange, and resource contention status during runtime.

3.3.3 Comparison to Existing Approaches. We finally summarize

our work in relation to existing solutions to Spark parameter tuning

in terms of the coverage of the mixed parameter space, adaptive

runtime optimization, multi-granularity tuning, andmulti-objective

Table 2: Comparison of Spark parameter tuning methods
Mixed Param.

Space

Adaptive

Runtime Opt.

Multi-

Granularity

Multi-

Objective

ReLocag [15] × × × ×
BestConfig [66] ✓ × × ×
ClassyTune [65] ✓ × × ×
LITE[25] ✓ × × ×
LOCAT [55] ✓ × × ×
Li et. al [24] ✓ × × ×
UDAO [41] ✓ × × ✓

Ours ✓ ✓ ✓ ✓

optimization (MOO), as shown in Table 2. More specifically, Re-

Locag [15], as a representative of resource optimization solutions,

focuses on individual parameters such as the number of cores but

does not cover the broad set of Spark parameters. Search-based

solutions to parameter tuning [65, 66] and recent Spark tuning

systems [24, 25, 41, 55] cover mixed parameter space but do not

support adaptive runtime optimization or multi-granularity tuning.

The only system that supports MOO is UDAO [41] but its parameter

space is much smaller due to query-level coarse-grained tuning.

To the best of our knowledge, our work is the first comprehensive

solution to Spark parameter tuning, covering the mixed parameter

space with multi-granularity tuning by leveraging the Spark AQE

mechanism, and best exploring the tradeoffs between objectives in

a theoretically sound multi-objective optimization approach.

4 MODELING
In this section, we introduce our modeling methods that support

both compile-time optimization and runtime optimization with

fine-grained parameter tuning.

4.1 Multi-Granularity Support
The Spark optimizer offers the collapsed logical query plan (LQP)

and query stages in the physical plan to enable fine-grained tuning

at runtime, but it does not provide any data structures for fine-

grained tuning at compile time. Therefore, we introduce the notion

of subQ, denoting a group of logical operators that will correspond

to a query stage (QS) when the logical plan is translated to a physical

plan, and build amodel for each subQ. Hypothetically, a subQwill be

transformed to a QS when it involves a scan operation or resides on

the edge of a LQP with dependency cleared (i.e., when its preceding

stages have completed). Since a physical query plan is divided into

a directed acyclic graph (DAG) of QSs, we also consider the logical

query plan (LQP) as a DAG of subQs at compile time, and treat the

subQ as the finest unit for compile-time optimization. Figure 1(b)

illustrates the LQP of TPCH-Q3, which can be divided into five

subQs, each corresponding to one QS. To support optimization at

runtime, we further construct performance models for the collapsed

logical query plan (LQP) and query stages (QS) accordingly.

4.2 Modeling Objectives
With the objective of optimizing latency and cost, our modeling

work seeks to make these metrics more robust and predictable.

Query latency in Spark, defined as the end-to-end duration to exe-

cute a query, benefits from using container technology with Spark’s

cluster manager, which ensures a dedicated allocation of cores and

memory to the entire query. Such resource isolation enhances the
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predictability of latency, making it a suitable target for optimizing

a query or a collapsed query plan. However, within a query, Spark

shares resources among parallel stages (subQs or QSs), leading to

two challenges in modeling latency at the stage level. First, the

end-to-end latency of a set of parallel stages often leads to a longer

latency than their maximum due to resource contention. Prior re-

search [28] assumed ample resources in industry-scale clusters and

simplified this issue by taking the max latency among parallel tasks,

but this approach is not applicable in the Spark environment of

shared resources. Second, predicting the latency of each stage di-

rectly is very hard due to its variability in a shared-resource setting,

where performance fluctuates based on resource contention.

To address these issues, we propose the concept of analytical
latency, calculated as the sum of the task latencies across all data

partitions divided by the total number of cores. This approach yields

two significant advantages. Firstly, it establishes a direct link be-

tween the latency of a query and its constituent stages, enabling

the computation of query-level latency at compile time through

a sum aggregator over the task latencies of all subQs. Secondly, it

enhances the predictability of query stage latency by excluding the

variability introduced by resource wait times, thus offering a more

consistent basis for latency prediction. To validate the efficacy of

analytical latency, we conducted a comparison with actual laten-

cies at the query level using the TPC-H and TPC-DS benchmarks

under the default Spark configuration. The results demonstrate a ro-

bust correlation between analytical and actual latencies, evidenced

by Pearson correlation coefficients of 97.2% for TPC-H and 87.6%

for TPC-DS. Furthermore, the distribution of the ratio between

analytical and actual latencies, as illustrated in Figure 5, shows

a predominant cluster around the value of 1. This indicates that

analytical latency is not only a reliable predictor of actual query

latency but also closely mirrors the actual execution time.

Cloud costs are primarily based on the consumption of resources,

such as CPU-hour, memory-hour, and IO operations. Therefore,

besides predicting latency and capturing CPU and memory usage

from the context parameters 𝜽𝑐 , we also model IO operations as an

additional factor. The cost for a query, similar to latency, can then

be estimated by employing a sum aggregator from all subQs.

To summarize, our modeling work seeks to capture (1) end-to-

end latency and cost for collapsed query plans (LQP) at runtime,

and (2) analytical latency and cost for subQs at compile time, as

well as for query stages (QSs) at runtime (in the face of resource

sharing), ensuring both to be robust targets for modeling.

4.3 Model Formulation for Optimization
We now introduce the methodology for building models for subQ,

LQP, and QS, which will enable their respective fine-graining later.

Feature Extraction. We extract features to capture the charac-

teristics of queries and the dynamics of their execution environment,

configured by decision variables and non-decision variables. First,

we extract the query plan as a DAG of vectors, where each query

operator is characterized through a composite encoding that inte-

grates i) the operator type via one-hot encoding, ii) its cardinality,

represented by row count and size in bytes, and iii) an average of

the word embeddings [35] computed from its predicates, providing

a rich, multidimensional representation of the operator’s functional

and data characteristics. Second, we capture critical contextual fac-

tors as non-decision variables, including i) input characteristics 𝛼 ,

aggregated from the statistics of leaf operators, ii) data distribution

𝛽 , quantifying the size distribution of input partitions with met-

rics like standard deviation-to-average ratio (
𝜎
` ), skewness ratio

(
max −`

` ), and range-to-average ratio (
max −min

` ), and iii) runtime

contention 𝛾 , encapsulating the statistics of the parallel-running

stages in a numeric vector, tracking the number of their tasks in run-

ning and waiting states, and aggregating statistics of their finished

task durations to characterize their behaviors. Lastly, we convert

the tunable parameters as decision variables into a numeric vector

to represent the Spark behavior.

Model Structures. The hybrid data structure of the query plan,

with a DAG of operator encoding, and other tabular features, poses

a challenge in model formulation. To tackle this, we adopt a multi-

channel input framework [28] that incorporates a Graph Trans-

former Network (GTN) [7] and a regressor to predict our objectives,

as shown in Figure 6. We first derive the query embedding using a

GTNmodel [7], which can handle the non-linear and non-sequential

relationships and employ attention mechanisms and Laplacian po-

sitional encoding to capture operator correlations as well as posi-

tional information. These embeddings are then concatenated with

other tabular data and processed through a regressor, allowing us

to capture the interplay among the query characteristics, critical

contextual factors, and tunable parameters.

Adapting to Different Modeling Targets. Figure 6 illustrates
the architecture of the LQP model, which has the largest number

of all feature factors. For subQ models built at compile time, we

adapt non-decision variables by deriving data characteristics from

the cost-based optimizer (𝛼 = 𝛼𝑐𝑏𝑜 ), assuming uniform data distri-

bution (𝛽 = ®0) and the absence of resource contention (𝛾 = ®0). For
the runtime QS model, we build a model by (1) updating runtime

statistics as we described above, encoding the operators from the

physical query plan, and dropping the 𝜽𝑝 parameters as they have

already been determined.

5 COMPILE-TIME/RUNTIME OPTIMIZATION
In this section, we present our hybrid compile-time/runtime opti-

mization approach to multi-granularity parameter tuning in the

multi-objective optimization setting.

5.1 Hierarchical MOO with Constraints
Our compile-time optimization finds the optimal configuration 𝜽 ∗𝑐
of the context parameters to construct an ideal Spark context for

query execution. Our approach does so by exploring the correla-

tion of 𝜽𝑐 with fine-grained 𝜽𝒑 and 𝜽𝒔 parameters for different

subqueries, under the modeling constraint that the non-decision
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variables for cardinality estimates are based on Spark’s cost-based

optimizer. Nevertheless, even under the modeling constraint, cap-

turing the correlation between the mixed parameter space allows

us to find a better Spark context for query execution, as we will

demonstrate in our experimental study.

The multi-objective optimization problem in Def. 3.3 provides

fine-grained control of 𝜽𝒑 and 𝜽𝒔 , at the subquery (subQ) level and

query stage level, respectively, besides the query level control of 𝜽𝒄 .
As such, the dimensionality of the parameter space is𝑑𝑐+𝑚·(𝑑𝑝+𝑑𝑠 ),
where 𝑑𝑐 , 𝑑𝑝 and 𝑑𝑠 denote the dimensionality of the 𝜽𝒄 , 𝜽𝒑 , 𝜽𝒔
parameters, respectively, and𝑚 is the number of query stages. Such

high dimensionality defeats most existing MOO methods when the

solving time must be kept under the constraint of 1-2 seconds for

cloud use, as we will show in performance evaluation.

To combat the high-dimensionality of the parameter space, we

propose a new approach named Hierarchical MOO with Constraints
(HMOOC). In a nutshell, it follows a divide-and-conquer framework

to break a large optimization problem on (𝜽𝒄 , {𝜽𝒑}, {𝜽𝒔 }) to a set of
smaller problems on (𝜽𝒄 , 𝜽𝒑 , 𝜽𝒔 ), one for subQ of the logical query

plan (as defined in the previous section). However, these smaller

problems are not independent as they must obey the constraint

that all the subproblems must choose the same 𝜽𝒄 value. More

specifically, the problem for HMOOC is defined as follows:

Definition 5.1. HierarchicalMOOwithConstraints (HMOOC)

argmin

𝜽
𝒇 (𝜽 ) =



𝑓1 (𝜽 ) = Λ(𝜙1 (LQP1, 𝜽𝒄 , 𝜽𝒑1, 𝜽𝒔1), . . . ,
𝜙1 (LQP𝑚, 𝜽𝒄 , 𝜽𝒑𝒎, 𝜽𝒔𝒎))

.

.

.

𝑓𝑘 (𝜽 ) = Λ(𝜙𝑘 (𝐿𝑄𝑃1, 𝜽𝒄 , 𝜽𝒑1, 𝜽𝒔1), . . . ,
𝜙𝑘 (𝐿𝑄𝑃𝑚, 𝜽𝒄 , 𝜽𝒑𝒎, 𝜽𝒔𝒎))


𝑠 .𝑡 . 𝜽𝒄 ∈ Σ𝑐 ⊆ R𝑑𝑐 , 𝜽𝒑𝒊 ∈ Σ𝑝 ⊆ R𝑑𝑝 ,

𝜽𝒔𝒊 ∈ Σ𝑠 ⊆ R𝑑𝑠 , 𝑖 = 1, . . . ,𝑚

where LQP𝑖 denotes the 𝑖-th subQ of the logical plan query, 𝜽𝒊 =
(𝜽𝒄 , 𝜽𝒑𝒊, 𝜽𝒔𝒊) denotes its configuration, with 𝑖 = 1, . . . ,𝑚, and𝑚 is

the number of subQs. Most notably, all the subQs share the same

𝜽𝒄 , but can use different values of 𝜽𝒑𝒊 and 𝜽𝒔𝒊 . Additionally, 𝜙 𝑗 is

the subQ predictive model of the 𝑗-th objective, where 𝑗 = 1, . . . , 𝑘 .

The function Λ is the mapping from subQ-level objective values to

query-level objective values, which can be aggregated using sum
based on our choice of analytical latency and cost metrics.

The main idea behind our approach is to tune each subQ inde-

pendently under the constraint that 𝜽𝒄 is identical among all subQ’s.
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Figure 9: Example of missed global optimal solutions in TPCH Q3

By doing so, we aim to get the local subQ-level solutions, and then

recover the query-level Pareto optimal solutions by composing

these local solutions efficiently. In brief, it includes three sequen-

tial steps: (1) subQ tuning, (2) DAG aggregation, and (3)WUN
recommendation.

Figure 7 illustrates an example of compile-time optimization

for TPCH-Q3 under the latency and cost objectives. For simplicity,

we show only the first three subQ’s in this query and omit 𝜽𝒔 in
this example. In subQ-tuning, we obtain subQ-level solutions with

configurations of 𝜽𝒄 and 𝜽𝒑 , where 𝜽𝒄 has the same set of two

values (𝜽1𝒄 , 𝜽
2
𝒄 ) among all subQ’s, but 𝜽𝒑 values vary. Subsequently

in the DAG aggregation step, the query-level latency and cost are

computed as the sum of the three subQ-level latency and cost values,

and only the Pareto optimal values of latency and cost are retained.

Finally, in the third step, we use theWUN (weighted Utopia nearest)

policy to recommend a configuration from the Pareto front.

5.1.1 Subquery (subQ) Tuning. Subquery (subQ) tuning aims to

generate an effective set of local solutions of (𝜽𝒄 , 𝜽𝒑 , 𝜽𝒔 ) for each
subQ while obeying the constraint that all the subQs share the same

𝜽𝒄 . For simplicity, we focus on (𝜽𝒄 , 𝜽𝒑 ) in the following discussion

as 𝜽𝒔 is treated the same way as 𝜽𝒑 .
One may wonder whether it is sufficient to generate only the lo-

cal Pareto solutions of (𝜽𝒄 , 𝜽𝒑 ) of each subQ. Unfortunately, this will
lead to missed global Pareto optimal solutions due to the constraint

on 𝜽𝒄 . Figure 9 illustrates an example with 3 subQs, where solu-

tions sharing the same index fall under the same 𝜽𝒄 configuration

and have achieved optimal 𝜽𝒑 under that 𝜽𝒄 value. The first row

in Figure 9 showcases subQ-level solutions, where triangle points

represent subQ-level optima and circle points denote dominated

solutions. The second row in Figure 9 displays the corresponding

query-level values, where both query-level latency and cost are
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the sums of subQ-level latency and cost. Notably, solution 6 is ab-

sent from the local subQ-level Pareto optimal solutions across all

subQs. Due to the identical 𝜽𝒄 constraint and the sum aggregation

from subQ-level values to query-level values, although solution 6

is dominated in all subQs, the sum of its subQ-level latency and

cost performs better than solution 4 (constructed from subQ-level

Pareto optimal solutions) and is a query-level Pareto point.

To address this issue, our main idea is to maintain an effective

set of solutions, more than just local Pareto solutions, for each subQ

in order to recover query-level Pareto optimal solutions. To do so,

we introduce the following two techniques.

1. Enriching 𝜽𝒄 Candidates. To minimize the chance of missing

global solutions, our first technique aims to preserve a diverse set

of 𝜽𝒄 configurations to be considered across all subQs. 𝜽𝒄 can be

initialized by random sampling or grid-search over its domain of

values. Then, we employ a number of methods to enrich further

the 𝜽𝒄 set. In the case that the 𝜽𝒄 values are initially randomly

sampled, we draw inspiration from the evolutionary algorithms [8]

and introduce a crossover operation over the existing 𝜽𝒄 population

to generate new candidates. If grid search is used to generate the

initial 𝜽𝒄 candidates, then we add random sampling to discover

other values other than those covered in the grid search.

2. Optimal 𝜽𝒑 Approximation. Next, under each 𝜽𝒄 candidate,

we show that it is crucial to keep track of the local Pareto optimal

𝜽𝒑 within each subQ. The following proposition explains why.

Proposition 5.1. Under any specific value 𝜽 𝑗
𝒄 , only subQ-level

Pareto optimal solutions (𝜽 𝑗
𝒄 , 𝜽

∗
𝒑) contribute to the query-level

Pareto optimal solutions.

In the interest of the space, all the proofs in this paper are de-

ferred to Appendix A.1.

The above result allows us to restrict our search of 𝜽𝒑 to only

the local Pareto optimal ones. However, given the large, diverse

set of 𝜽𝒄 candidates, it is computationally expensive to solve the

MOO problem for 𝜽𝒑 repeatedly, once for each 𝜽𝒄 candidate. We

next introduce a clustering-based approximation to reduce the

computation complexity. It is based on the hypothesis that, within

the same subQ, similar 𝜽𝒄 candidates entail similar optimal 𝜽𝒑
values in the tuning process. By clustering similar 𝜽𝒄 values into

a small number of groups (based on their Euclidean distance), we

then solve the MOO problem of 𝜽𝒑 for a single 𝜽𝒄 representative of

each group. To expedite the repeated solving of 𝜽𝒑 for different 𝜽𝒄
representatives, we maintain a pool of samples of 𝜽𝒑 and among

them find the Pareto optimal values for each 𝜽𝒄 representative. We

then use the optimized 𝜽𝒑 as the estimated optimal solution for

other 𝜽𝒄 candidates within each group.

Algorithm. Algorithm 1 describes the steps for obtaining an ef-

fective solution set of (𝜽𝒄 , 𝜽𝒑) for each subQ. Line 1 initiates the

process by generating the initial 𝜽𝒄 candidates, e.g. random sam-

pling or grid-search. These candidates are then grouped using a

clustering approach, where 𝑟𝑒𝑝_𝑐_𝑙𝑖𝑠𝑡 constitutes the list of 𝜽𝒄 rep-

resentatives for the 𝑛 groups, 𝐶_𝑙𝑖𝑠𝑡 includes the members within

all 𝑛 groups, and ^ represents the clustering model. In Line 3, 𝜽𝒑
optimization is performed for each representative 𝜽𝒄 candidate.

Subsequently, the optimal 𝜽𝒑 of the representative 𝜽𝒄 is assigned

to all members within the same group and is fed to the predictive

Algorithm 1: Effective Set Generation

Require: 𝑄 , 𝜙𝑖 , 𝑛, ∀𝑖 ∈ [1, 𝑘 ], 𝛼, 𝛽,𝛾 .
1: 𝚯

(0)
𝒄 = init_c()

2: 𝑟𝑒𝑝_𝑐_𝑙𝑖𝑠𝑡 ,𝐶_𝑙𝑖𝑠𝑡 , ^ = cluster(𝚯
(0)
𝒄 , 𝑛)

3: 𝚯
∗
𝒑 = optimize_p_moo(𝑟𝑒𝑝_𝑐_𝑙𝑖𝑠𝑡 , 𝜙 , 𝛼, 𝛽,𝛾 ,𝑄)

4: 𝛀
(0)

, 𝚯
(0)

= assign_opt_p(𝐶_𝑙𝑖𝑠𝑡 , 𝑟𝑒𝑝_𝑐_𝑙𝑖𝑠𝑡 , 𝚯∗
𝒑 , 𝜙 , 𝛼, 𝛽,𝛾 ,𝑄)

5: 𝚯
(𝒏𝒆𝒘)
𝒄 = enrich_c(𝛀

(0)
, 𝚯

(0)
)

6: 𝐶_𝑙𝑖𝑠𝑡 (𝑛𝑒𝑤)
= assign_cluster(𝚯

(𝒏𝒆𝒘)
𝒄 , 𝑟𝑒𝑝_𝑐_𝑙𝑖𝑠𝑡 , ^)

7: 𝛀
(𝒏𝒆𝒘)

, 𝚯
(𝒏𝒆𝒘)

= assign_opt_p(𝐶_𝑙𝑖𝑠𝑡 (𝑛𝑒𝑤)
, 𝑟𝑒𝑝_𝑐_𝑙𝑖𝑠𝑡 , 𝚯∗

𝒑 , 𝜙 ,

𝛼, 𝛽,𝛾 ,𝑄)

8: 𝛀, 𝚯 = union(𝛀
(0)

, 𝚯
(0)

, 𝛀
(𝒏𝒆𝒘)

, 𝚯
(𝒏𝒆𝒘)

)

9: return 𝛀, 𝚯

models to get objective values (Line 4). After that, the initial effec-

tive set is obtained, where Ω (0)
represents the subQ-level objective

values under different 𝜽𝒄 , and Θ(0)
represents the corresponding

configurations. Line 5 further enriches 𝜽𝒄 by either random sam-

pling or applying our crossover method, which expands the initial

effective set to generate new 𝜽𝒄 candidates. Afterwards, the cluster

model ^ assigns the new 𝜽𝒄 candidates with their group labels (Line
6). The previous optimal 𝜽𝒑 values are then assigned to the new

members within the same group, resulting in their corresponding

subQ-level values as the enriched set (Line 7). Finally, the initial set

and the enriched set are combined as the final effective set of subQ

tuning (Line 8).

5.1.2 DAG Aggregation. DAG aggregation aims to recover query-

level Pareto optimal solutions from subQ-level solutions. This task

is a combinatorial MOO problem, as each subQ must select a solu-

tion from its non-dominated solution set while satisfying the 𝜽𝒄
constraint, i.e., identical 𝜽𝒄 configuration among all subQs. The

complexity of this combinatorial problem can be exponential in

the number of subQs. Our proposed approach below addresses this

challenge by providing optimality guarantees and reducing the

computation complexity.

Simplified DAG. A crucial observation that has enabled our ef-

ficient methods is that in our problem setting, the optimization

problem over a DAG structure can be simplified to an optimization

problem over a list structure. This is due to our choice of analytical

latency and cost metrics, where the query-level objective can be

computed as the sum of subQ-level objectives, which applies to

the analytical latency, IO cost, CPU cost, etc., as explained in the

previous section. The MOO problem over a DAG can be simulated

with a list structure for computing query-level objectives.

HMOOC1: Divide-and-Conquer. Under a fixed 𝜽𝒄 , i.e., satisfying
the constraint inherently, we propose a divide-and-conquer method

to compute the Pareto set of the simplified DAG, which is reduced

to a list of subQs. The idea is to (repeatedly) partition the list into

two halves, solve their respective subproblems, and merge their

solutions to global Pareto optimal ones. The merge operation enu-

merates all the combinations of solutions of the two subproblems,

sums up their objective values, and retains only the Pareto opti-

mal ones. Our proof (available in Appendix A.1) shows that this

method returns a full set of query-level Pareto optimal solutions
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as it enumerates those combinations of subQ-level solutions that

have a chance to be global Pareto optimal.

HMOOC2: WS-based Approximation. We propose a second

technique to approximate the MOO solution over a list structure.

For each fixed 𝜽𝒄 , we apply the weighted sum (WS) method to

generate evenly spaced weight vectors. Then for each weight vector,

we obtain the (single) optimal solution for each subQ and sum the

solutions of subQ’s to get the query-level optimal solution. It can

be proved that this WS method over a list of subQs guarantees to

return a subset of query-level Pareto solutions. Further details of

this method are deferred to Appendix A.1).

HMOOC3: Boundary-based Approximation. Given that DAG

aggregation under each 𝜽𝒄 candidate operates independently, it is

inefficient to do so repeatedly when we have a large number of 𝜽𝒄
candidates. Our next approximate technique stems from the idea

that the objective space of DAG aggregation under each 𝜽𝒄 can

be approximated by 𝑘 extreme points, where 𝑘 is the number of

objectives. In this context, the extreme point under a fixed 𝜽𝒄 is the

Pareto optimal point with the best query-level value for any objec-

tive. Then, the approximate query-level Pareto set is determined

by the non-dominated extreme points among all 𝜽𝒄 points.

The rationale behind this approximation lies in the observation

that solutions from different 𝜽𝒄 candidates correspond to distinct

regions on the query-level Pareto front. This arises from the fact

that each 𝜽𝒄 candidate determines the total resources allocated to

the query, and a diverse set of 𝜽𝒄 candidates ensures good coverage

across these resources. Varying total resources, in turn, lead to

different objectives of query performance, hence resulting in good

coverage of the Pareto front of cost-performance tradeoffs.

Therefore, we consider the degenerated extreme points to sym-

bolize the boundaries of different (resource) regions within the

query-level Pareto front. Figure 8 illustrates an example. Here, the

dashed rectangles with their extreme points under different colors

represent the objective space of query-level solutions under various

𝜽𝒄 candidates. The brown dashed line represents the approximate

query-level Pareto front derived by filtering the dominated solutions

from the collection of extreme points. The star solution indicates a

missed query-level Pareto solution, as it cannot be captured from

the extreme points.

The algorithm works as follows. For each 𝜽𝒄 candidate, for each

objective, we select the subQ-level solution with the best value

for that objective for each subQ, and then sum up the objective

values of such solutions from all subQs to form one query-level

extreme point. Repeating this procedure will lead to a maximum of

𝑘𝑛 query-level solutions, where 𝑘 is the number of objectives and

𝑛 is the number of 𝜽𝒄 candidates. An additional filtering step will

retain the non-dominated solutions from the 𝑘𝑛 candidates, using

an existing method of complexity 𝑂 (𝑘𝑛 log(𝑘𝑛)) [20].
Our formal results include the following:

Proposition 5.2. Under a fixed 𝜽𝒄 candidate, the query-level ob-

jective space of Pareto optimal solutions is bounded by its extreme

points in a 2D objective space.

Proposition 5.3. Given subQ-level solutions, our boundary ap-

proximation method guarantees to include at least 𝑘 query-level

Pareto optimal solutions for a MOO problem with 𝑘 objectives.

5.2 Runtime Optimization
While the compile-time optimization provides a fine-grained con-

figuration of the parameters, it relies on estimated cardinality and

assumption of uniform data distribution and no resource contention.

In addition, Spark accepts only one copy of 𝜽𝑝 and 𝜽𝑠 at the query
submission time and can change the physical query plan during

the AQE. Therefore, the true value of compile-time optimization is

to recommend the optimal context parameters 𝜽 ∗𝑐 by considering

the correlations with 𝜽𝑝 and 𝜽𝑠 . Then, our runtime optimization

addresses the remaining problems, adapting 𝜽𝑝 and 𝜽𝑠 based on

actual runtime statistics and plan structures.

Given the constraint that Spark takes only one copy of 𝜽𝑝 and

𝜽𝑠 at query submission time, we intelligently aggregate the fine-

grained 𝜽𝑝 and 𝜽𝑠 from compile-time optimization to initialize the

runtime process. In particular, Spark AQE can convert a sort-merge

join (SMJ) to a shuffled hash join (SHJ) or a broadcast hash join

(BHJ), but not vice versa. Thus, imposing high thresholds (𝑠3, 𝑠4
in Table 1) to force SHJ or BHJ based on inaccurate compile-time

cardinality can result in suboptimal plans (as shown in Figure 3(b)).

To mitigate this, we initialize 𝜽𝑝 with the smallest threshold among

all join-based subQs, enabling more informed runtime decisions.

Other details of aggregating 𝜽𝑝 and 𝜽𝑠 are in Appendix A.3.

Runtime optimization operates within a client-server model. The

client, integrated with the Spark driver, dispatches optimization

requests—including runtime statistics and plan structures—when a

collapsed logical query plan (LQP) or a runtime query stage (QS)

necessitates optimization (Steps 6, 9 in Figure 2). The server, hosted

on a GPU-enabled node and supported by machine learning models

and MOO algorithms [41], processes these requests over a high-

speed network connection.

Complex queries can trigger numerous optimization requests ev-

ery time when a collapsed logical plan or a runtime QS is produced,

significantly impacting overall latency. For instance, TPCDS queries,

with up to 47 subQs, may generate up to nearly a hundred requests

throughout a query’s lifecycle. To address this, we established rules

to prune unnecessary requests based on the runtime semantics of

parametric rules as detailed in Appendix A.3. By applying these

rules, we substantially reduce the total number of optimization calls

by 86% and 92% for TPC-H and TPC-DS respectively.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate our modeling and fine-grained compile-

time/runtime optimization techniques. We further present an end-

to-end evaluation against the SOTA tuning methods.

Spark setup. We perform SQL queries at two 6-node Spark

3.5.0 clusters with runtime optimization plugins. Our optimization

focuses on 19 parameters, including 8 for 𝜽𝑐 , 9 for 𝜽𝑝 , and 2 for 𝜽𝑠 ,
selected based on feature selection profiling [18] and best practices

from the Spark documentation. More details are in Appendix B.1.

Workloads. We generate datasets from the TPC-H and TPC-DS

benchmarks with a scale factor of 100. We use the default 22 TPC-H

and 102 TPC-DS queries for the optimization analyses and end-

to-end evaluation. To collect training data, we further treat these

queries as templates to generate 50k distinct parameterized queries

for TPC-H and TPC-DS, respectively. We run each query under one

configuration sampled via Latin Hypercube Sampling [32].
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Table 3: Model performance with Graph+Regressor

Target
Ana-Latency/Latency (s) IO (MB) Xput

WMAPE P50 P90 Corr WMAPE P50 P90 Corr K/s

TPC-H

subQ 0.131 0.029 0.292 0.99 0.025 0.006 0.045 1.00 70

QS 0.149 0.027 0.353 0.98 0.002 3e-05 0.004 1.00 86

LQP 0.164 0.060 0.337 0.95 0.010 8e-05 0.002 1.00 146

TPC-DS

subQ 0.249 0.030 0.616 0.95 0.098 0.016 0.134 0.99 60

QS 0.279 0.060 0.651 0.95 0.028 4e-04 0.023 1.00 79

LQP 0.223 0.095 0.459 0.93 0.107 0.028 0.199 0.99 462

6.1 Model Evaluation
We trained separate models for subQ, QS, and LQP to support

compile-time/runtime optimization. The traces of each workload

were split into 8:1:1 for training, validation, and testing. We con-

ducted hyperparameter tuning in a GPU node with 4 NVIDIA A100

cards. We evaluate each model with the following metrics: weighted

mean absolute percentage error (WMAPE), median and 90th per-

centile errors (P50 and P90), Pearson correlation (Corr), and infer-

ence throughput (Xput).

Expt 1: Model Performance.We present the performance of our

best-tuned models for TPCH and TPCDS in Table 3. First, our mod-

els can provide highly accurate prediction in latency and analytical

latency for Spark queries for different compile-time and runtime

targets, achieving WMAPEs of 13-28%, P50 of 3-10%, and P90 of

29-65%, alongside a correlation range of 93-99% with the ground

truth. Second, IO is more predictable than latency, evidenced by a

WMAPE of 0.2-11% and almost perfect 99-100% correlation with the

actual IO, attributed to its consistent performance across configura-

tions. Third, the models show high inference throughput, ranging

from 60-462K queries per second, which enables efficient solving

time of our compile-time and runtime optimizations. Overall, these

results demonstrate the robust performance of our models in pre-

dicting cost performance metrics for Spark queries, while enabling

efficient optimization.

Expt 2: Comparison of Compile-time and Runtime Results. We

then look into the performance differences between the runtime

QS and its corresponding subQ at compile time. First, the latency

performance in runtime QS is slightly inferior to its corresponding

subQ at compile time. This disparity can be attributed to the runtime

QS’s exposure to more varied and complex query graph structures,

which complicates the prediction process. Second, the runtime QS

consistently surpasses the subQ in IO prediction. This superior

performance is linked to the direct correlation between IO and

input size; the runtime QS benefits from access to actual input sizes,

thereby facilitating more precise predictions. In contrast, the subQ

must base its predictions on input sizes estimated by the cost-based

optimizer (CBO), which introduces more errors.

6.2 Compile-time MOO Methods
We next evaluate our compile-time MOO methods for fine-grained

tuning against SOTA MOO methods: the weighted sum (WS) [30],

evolutionary (Evo) [8], and progressive frontier (PF) [41] methods,

which were reported to be the most competitive methods [41].

Expt 5: Comparison of DAG Aggregation methods. Figures 10(a)
and 10(b) compare the three DAG aggregation methods (§5.1.2) in

the HMOOC framework using the two benchmarks. Hypervolume

(HV) is a standard measure of the dominated space of a Pareto set

Table 4: Latency reduction with a strong speed preference
TPC-H TPC-DS

MO-WS HMOOC3 HMOOC3+ MO-WS HMOOC3 HMOOC3+

Coverage (1s) 5% 95% 68% 0% 98% 96%

Coverage (2s) 36% 100% 100% 0% 100% 100%

Total Lat Reduction 18% 59% 61% 25% 59% 64%

Avg Lat Reduction -1% 52% 52% 34% 54% 57%

Avg Solving Time (s) 2.6 0.52 0.83 15 0.47 0.62
Max Solving Time (s) 4.5 1.01 1.55 68 1.24 1.34

Avg Lat Reduction
Solving Time 1% 103% 71% 3% 127% 99%

in the objective space. As depicted in Figures 10(a) and 10(b), the

three methods demonstrate similar HV but vary in time cost. The

Boundary-based Approximation (HMOOC3) is the most efficient for

both benchmarks without losing much HV, achieving the solving

time of 0.32-1.72s (in particular, all under 1 second for TPCH).

Therefore, we use HMOOC3 in the remaining experiments.

Expt 6: Comparison with SOTA MOO methods. We next compare

HMOOC3 with 3 SOTA MOO methods, WS [30] (with tuned hyper-

parameters of 10k samples and 11 pairs of weights), Evo [8] (with a

population size of 100 and 500 function evaluations), and PF [41],

for fine-grained tuning of parameters based on Def. 3.3.

Figures 10(c)-10(e) compare the methods in HV and solving

time, where the blue bars represent fine-grained tuning. HMOOC3

achieves the highest average HV among all methods, 93.4% in TPCH

and 89.9% in TPCDS, and the lowest time cost, within 0.5-0.55s.

It outperforms other methods with 7.9%-81.7% improvement in

HV and 81.8%-98.3% reduction in solving time. These results stem

from HMOOC’s hierarchical framework, which addresses a smaller

search space with only one set of 𝜽𝒄 and 𝜽𝒑 at a time, and uses

efficient DAG aggregation to recover query-level values from subQ-

level ones. In contrast, other methods solve the optimization prob-

lem using the global parameter space, which includes one set of 𝜽𝒄
and𝑚 sets of 𝜽𝒑 , where𝑚 is the number of subQs in a query.

Expt 7: Comparison with query-level tuning. We next consider

WS, EVO, and PF only for coarse-grained, query-level tuning, which

sets one copy of 𝜽𝒑 and 𝜽𝒔 values for uniform control of all subQs, to

reduce its parameter space. The orange bars in Figures 10(c)- 10(f)

depict the performance under query-control tuning. For TPCH,

both the HV and solving time under query-level tuning perform

better than those under subQ-level tuning, due to a much smaller

search space. But it still takes over an average of at least 2.3s and

much lower HV (at most 81.6%) than HMOOC3 (93.4%). For TPCDS,

except PF, WS and EVO perform slightly worse in HV, and they

all improve solving time somewhat. However, all of them lose to

HMOOC3 in HV (at most 83.3% v.s. 89.9%) and in solving time (the

average exceeding 10s v.s. 0.55s).

6.3 End-to-End Evaluation
We integrate runtime optimizationwith the best-performing compile-

time optimization method HMOOC3, denoted as HMOOC3+, and com-

pare it with existing methods in actual execution time when Spark

AQE is enabled. To account for model errors, we refine the search

range for each Spark parameter by avoiding the extreme values of

the parameter space that could make the predictions less reliable.

Expt 9: End-to-end benefits against query-level MOO. We first

show the advantages of our methods (HMOOC3 and HMOOC3+) in re-

ducing latency compared to the best-performingMOOmethod from
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Figure 10: Analytical and end-to-end performance of our algorithm, compared to the state-of-the-art (SOTA) methods

Table 5: Latency and cost adapting to preferences
Prefs. TPC-H TPC-DS

Lat/Cost SO-FW HMOOC3+ SO-FW HMOOC3+

(0.0, 1.0) 20% / -11% -17% / -9% -6% / 64% -47% / -22%

(0.1, 0.9) 1% / 1% -25% / -5% -28% / 105% -51% / -12%

(0.5, 0.5) -1% / 25% -43% / 2% -28% / 128% -57% / 16%

(0.9, 0.1) -13% / 27% -52% / 9% -34% / 139% -57% / 45%

(1.0, 0.0) -14% / 44% -52% / 12% -26% / 144% -58% / 50%

the previous study, i.e., WS for query-level MOO, denoted as MO-WS.
Here, we prioritize latency over cost, with a preference vector of

(0.9, 0.1) on latency and cost. The results in Table 4 show the im-

provement over the default Spark configuration. First, fine-grained
tuning significantly enhances performance (labeled as major result

R1), cutting latency by 59% for both benchmarks with compile-time

optimization (HMOOC3), and by 61% and 64% for TPC-H and TPC-DS,

respectively, further with runtime optimization (HMOOC3+). They
both outperform MO-WS with only 18-25% reductions and in some

cases, underperforming the default configuration. Second, MO-WS,
even limited to query-level tuning, suffers in efficiency, finding Pareto
solutions for merely 36% and 0% of queries within 2s in TPCH and

TPCDS, respectively. In contrast, our approach solves MOO for

all queries with an average time of 0.62-0.83s and a maximum of

1.34-1.55s. When we consider a new efficiency measure, defined as

latency reduction per unit of solving time, our method vastly out-

performs MO-WS, achieving a 1-2 order-of-magnitude improvement
in efficiency for latency reduction (R2).

Further, when runtime optimization is enabled, HMOOC3+ enables
more benefits for longer-running queries (R3), which are often com-

plex to optimize and suffer from suboptimal query plans with the

static 𝜽𝑝 tuned based on the cardinality estimates and simplifying

assumptions at compile time. Figure 10(g) shows such reductions

for the long-running queries from TPCH and TPCDS. Compared to

HMOOC3, HMOOC3+ achieves up to a 22% additional latency reduction

over the default configuration. More details are in Appendix B.3.

Expt 10: Adaptability Comparison to SO with fixed weights. As
MO-WS is not practical for cloud use due to its inefficiency, we now

compare the adaptability of our approach against the most common,

practical approach that combines multiple objectives into a single

objective using fixed weights [23, 59, 66], denoted as SO-FW. The
evaluation, presented in Table 5, focuses on the average reduction

rates in latency and cost relative to the default configurations across

a range of preference vectors for TPCH and TPCDS queries. First,

HMOOC3+ dominates SO-FW with more latency and cost reductions in
most cases (R4), achieving up to 52-64% latency reduction and 9-22%

cost reduction in both benchmarks, while SO-FW gets at most 1-34%

average latency reduction and in most cases, increases the cost

compared to default. Second, our approach demonstrates superior
adaptability to varying preferences (R5), enhancing latency reduc-

tions progressively as preferences shift towards speed. In contrast,

SO-FW does not make meaningful recommendations. Specifically,

under a cost-saving preference of (0.0, 1.0), SO-FW struggles to lower
costs in TPCDS, instead increasing the average cost by 64% across

all queries. Despite this cost increase, it achieves a merely 6% reduc-

tion in latency. In contrast, HMOOC3+ achieves a 47% reduction in

latency alongside a 22% cost saving, underscoring its effectiveness

and adaptability to the specified cost performance preference.

7 CONCLUSIONS
This paper presented a Spark optimizer for parameter tuning that

achieves multi-granularity tuning in the new AQE architecture

based on a hybrid compile-time/runtime optimization approach.

Our approach employed sophisticated modeling techniques to cap-

ture different compile-time and runtime modeling targets, and a

suite of techniques tailored for multi-objective optimization (MOO)

while meeting the stringent solving time constraint of 1-2 seconds.

Evaluation results using TPC-H and TPC-DS benchmarks show that

(𝑖) when prioritizing latency, our approach achieves 61% and 64%

latency reduction on average for TPC-H and TPC-DS, respectively,

under the solving time of 0.62-0.83 sec, outperforming the most

competitive MOO method with 18-25% latency reduction and high

solving time of 2.4-15 sec; (𝑖𝑖) when shifting preferences between

latency and cost, our approach dominates the solutions from alter-

native methods by a wide margin. In the future, we plan to extend

our tuning approach to support diverse (e.g., machine learning)

workloads and heterogeneous clusters in cloud deployment.
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Algorithm 2: General_Divide_and_conquer
Require: subQ-level values Ω, subQ-level configurations Θ.
1: if |Ω | == 1 then
2: return Ω, Θ
3: else
4: Ωℎ

, Θℎ
= first_half(Ω, Θ)

5: Ω𝑟
, Θ𝑟

= second_half(Ω, Θ)
6: Fℎ, Cℎ

= General_Divide_and_conquer(Ωℎ
, Θℎ

)

7: F𝑟 , C𝑟
= General_Divide_and_conquer(Ω𝑟

, Θ𝑟
)

8: return merge(Fℎ, Cℎ, F𝑟 , C𝑟
)

9: end if

Algorithm 3: merge

Require: Fℎ, Cℎ, F𝑟 , C𝑟
.

1: F, C = ∅, ∅
2: for (𝐹1, 𝐹2 ), (𝑐1, 𝑐2 ) ∈ (Fℎ, Cℎ ) do
3: for (𝐹 ′

1
, 𝐹 ′

2
), (𝑐′

1
, 𝑐′

2
) ∈ (F𝑟 , C𝑟 ) do

4: F = F ∪ { (𝐹1 + 𝐹 ′
1
, 𝐹2 + 𝐹 ′

2
) }

5: C = C ∪ { (𝑐1, 𝑐′
1
), (𝑐2, 𝑐′

2
) }

6: end for
7: end for
8: return F∗, C∗

= filter_dominated(F, C)

A ADDITIONAL MATERIALS FOR MOO
A.1 Algorithms and Proofs
In this section, we include the algorithms, proofs and complexity

analysis of our optimization techniques.

A.1.1 Subquery (subQ) Tuning. Below, we provide the proof of

Proposition 5.1.

Proposition 5.1 Under any specific value 𝜽 𝑗
𝒄 , only subQ-level

Pareto optimal solutions (𝜽 𝑗
𝒄 , 𝜽

∗
𝒑𝒊) for the 𝑖-th subQ contribute to

the query-level Pareto optimal solutions (𝜽 𝑗
𝒄 , {𝜽

∗
𝒑}).

Proof. Let 𝐹
𝑗
𝑞 be a query-level Pareto optimal solution for \

𝑗
𝑐 . It

can be expressed as 𝐹
𝑗
𝑞 =

∑𝑚
𝑖=1 𝐹

𝑗
𝑠𝑖
. Assume that there exists at least

one 𝑖 , e.g., 𝑖1, such that 𝐹
𝑗
𝑠𝑖1

is not optimal for the 𝑖1-th subQ. Let

𝐹
𝑗′
𝑞 = 𝐹

𝑗′
𝑠𝑖1

+∑𝑚
𝑖=1,𝑖≠𝑖1

𝐹
𝑗
𝑠𝑖
where 𝐹

𝑗′
𝑠𝑖1

is Pareto optimal for the 𝑖1-th

subQ.

We have

𝐹
𝑗
𝑞 − 𝐹

𝑗′
𝑞 = 𝐹

𝑗
𝑠𝑖1

− 𝐹
𝑗′
𝑠𝑖1

Since 𝐹
𝑗′
𝑠𝑖1

is optimal for the 𝑖1-th subQ, we have 𝐹
𝑗
𝑠𝑖1

> 𝐹
𝑗′
𝑠𝑖1

.

This means that 𝐹
𝑗
𝑠𝑖1

is dominated by 𝐹
𝑗′
𝑠𝑖1

, which contradicts our

hypothesis. Therefore, a Pareto optimal solution for the query-level

can only contain subQ-level Pareto optimal solutions under a fixed

\
𝑗
𝑐 .

□

Complexity Analysis of Algorithm 1. The complexity of the

cluster function depends on the choice of the cluster algorithm. For

example, given 𝑁 initialized 𝜽𝒄 candidates, the average complexity

of k-means is 𝑂 (𝐶 · 𝑁 ·𝑇 ), where 𝑁 is the number of samples for

𝜽𝒄 , 𝐶 is the number of clusters, and 𝑇 is the number of iterations

[2]. The optimize_p_moo function solves MOO problems that opti-

mize 𝜽𝒑 under different 𝜽𝒄 representatives of all subQs. Assuming

optimizing 𝜽𝒑 under a fixed 𝜽𝒄 of each subQ is _, the complexity of

the optimize_p_moo function is𝑂 (𝑚 ·𝐶 ·_), where𝑚 is the number

of subQs. The assign_opt_p function assigns optimal 𝜽𝒑 of the rep-

resentative 𝜽𝒄 to all members within the same 𝜽𝒄 group. Given the

average number of optimal 𝜽𝒑 among all 𝜽𝒄 as 𝑝avg, for𝑚 subQs,

the complexity of the assign_opt_p function is𝑂 (𝑝avg · 𝑁 ·𝑚). The
enrich_c function either random samples 𝜽𝒄 or applying our heuris-

tic method, which includes two steps. The first step is to union the

local optimal 𝜽𝒄 of all subQs, where filtering dominated solutions of

𝑚 subQs takes𝑂 (𝑚 · (𝑝avg ·𝑁 ) · log(𝑝avg ·𝑁 )) [20]. And the second
step addresses a Cartesian product of two lists. Given the lengths

of two lists as 𝑁1 and 𝑁2 respectively, its complexity is 𝑂 (𝑁1 · 𝑁2).
The assign_cluster function utilizes the previous cluster model to

obtain cluster labels for new 𝜽𝒄 candidates, whose complexity is

linear with the number of new 𝜽𝒄 candidates.

A.1.2 DAG Aggregation. We provide further details of three meth-

ods for DAG aggregation.

HMOOC1: Divide-and-Conquer. This DAG aggregation method

is described in Algorithm 2. The Ω,Θ are the effective set of all

subQs, where Ω represents subQ-level objective values, andΘ repre-

sents the corresponding configurations, including {𝜽𝑐 , {𝜽𝒑}, {𝜽𝒔 }}.
If there is only one subQ, it returns the Ω,Θ (lines 1-2). Otherwise,

it follows a divide-and-conquer framework (lines 4-8).

The main idea is a merging operation, which is described in

Algorithm 3. The input includes the subQ-level objective values

(e.g. Fℎ
is a Pareto frontier) and its configurations (C𝑟

) for the two

nodes to be merged, where ℎ and 𝑟 denote they are two different

nodes. It merges two nodes into a pseudo node by enumerating all

the combinations of solutions in the two nodes (lines 2-3), summing

up their objective values (lines 4-5) and taking its Pareto frontier

as the solutions of this pseudo node (line 8).

From the view of optimality, Algorithm 2 is proved to return a

full set of the query-level Pareto optimal solutions as it enumerates

over all subQ-level solutions. The complexity of merge function is

𝑂 (𝑀 ∗𝑁 ) +𝑂 ((𝑀 ∗𝑁 )𝑙𝑜𝑔(𝑀 ∗𝑁 )) if there are𝑀 and 𝑁 solutions

in two nodes, where the enumeration takes𝑂 (𝑀 ∗ 𝑁 ) and filtering

dominated solutions takes 𝑂 ((𝑀 ∗ 𝑁 )𝑙𝑜𝑔(𝑀 ∗ 𝑁 )). While after

merging several times, 𝑀 and 𝑁 could be high. Thus the total

complexity could be high.

The core operation in HMOOC1 is the merge, which enumerates

over all subQ-level solutions. The following are the theoretical

proof. For the sake of simplicity, we consider the case with two

nodes.

Proposition A.1. Algorithm 2 always output the full Pareto front

of the simplified DAG.

Proof. Let 𝐷 and 𝐺 be two nodes (e.g., subQs or aggregated

subQs). Let ⊕ be the Minkowski sum, i.e., 𝐷 ⊕ 𝐺 = {𝐹𝐷 + 𝐹𝐺 , 𝐹𝐷 ∈
𝐷, 𝐹𝐺 ∈ 𝐺}. Let 𝑃 𝑓 denote the Pareto Front of a node.

𝑃 𝑓 (𝑃 𝑓 (𝐷) ⊕ 𝑃 𝑓 (𝐺)) = 𝑃 𝑓 (𝐷 ×𝐺)
Let 𝐸𝐷 : C𝐷 → R be the evaluation function of node 𝐷 , where

C𝐷 is the set of configurations for node𝐷 . We define 𝐸𝐺 in a similar
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Algorithm 4: Compressing_list_nodes

Require: subQ_list, ws_pairs.

1: PO = [ ], conf = [ ]

2: for [𝑤𝑙 , 𝑤𝑐 ] in ws_pairs do
3: po_n = [ ], conf_n = {}

4: for subQ_po, subQ_conf in subQ_list do
5: subQ_po_norm = normalize_per_subQ(subQ_po)

6: opt_ind = minimize_ws([𝑤𝑙 , 𝑤𝑐 ], subQ_po_norm)

7: po_n.𝑎𝑝𝑝𝑒𝑛𝑑(subQ_po[opt_ind])

8: conf_n.𝑎𝑝𝑝𝑒𝑛𝑑(subQ_conf[opt_ind])

9: end for
10: PO.𝑎𝑝𝑝𝑒𝑛𝑑(sum(po_n)), conf.𝑎𝑝𝑝𝑒𝑛𝑑(conf_n)

11: end for
12: return filter_dominated(PO, conf)

manner. We also define 𝐸 : (𝑐𝐷 , 𝑐𝐺 ) ↦→ 𝐸𝐷 (𝑐𝐷 ) + 𝐸𝐺 (𝑐𝐺 ), where
𝑐𝐷 and 𝑐𝐺 are one configuration in C𝐷 and C𝐺 respectively.

Let 𝑝 ∈ 𝑃 𝑓 (𝑃 𝑓 (𝐷) ⊕ 𝑃 𝑓 (𝐺)). Then 𝑝 can be addressed as a sum

of two terms: one from 𝑃 𝑓 (𝐷) and the other from 𝑃 𝑓 (𝐺), i.e.,

𝑝 = 𝑝𝐷 + 𝑝𝐺 , 𝑝𝐷 ∈ 𝑃 𝑓 (𝐷), 𝑝𝐺 ∈ 𝑃 𝑓 (𝐺)
Let 𝑐𝐷 ∈ 𝑃 𝑓 −1 (𝑝𝐷 ) and 𝑐𝐺 ∈ 𝑃 𝑓 −1 (𝑝𝐺 ), i.e., 𝑐𝐷 is chosen such

as 𝐸𝐷 (𝑐𝐷 ) = 𝑝𝐷 , and likewise for 𝑐𝐺 . Then we have 𝑝 = 𝐸 (𝑐𝐷 , 𝑐𝐺 ),
so 𝑝 belongs to the objective space of 𝐷 × 𝐺 . Suppose 𝑝 doesn’t

belong to 𝑃 𝑓 (𝐷 × 𝐺). This means that there exists 𝑝′ in 𝑃 𝑓 (𝐷 ×
𝐺) that dominates 𝑝 . 𝑝′ can be expressed as 𝑝′ = 𝑝′

𝐷
+ 𝑝′

𝐺
with

𝑝′
𝐷

∈ 𝑃 𝑓 (𝐷) and 𝑝′
𝐺

∈ 𝑃 𝑓 (𝐺). 𝑝′ dominates 𝑝 can be expressed

as 𝑝′
𝐷

< 𝑝𝐷 and 𝑝′
𝐺

≤ 𝑝𝐺 or 𝑝′
𝐷

≤ 𝑝𝐷 and 𝑝′
𝐺

< 𝑝𝐺 in our

optimization problem with minimization, which contradicts the

definition of 𝑝 as belonging to the Pareto Front. Therefore 𝑝 must

belong to 𝑃 𝑓 (𝐷 ×𝐺) and thus 𝑃 𝑓 (𝑃 𝑓 (𝐷) ⊕ 𝑃 𝑓 (𝐺)) ⊆ 𝑃 𝑓 (𝐷 ×𝐺).
Let us now suppose that 𝑝 ∈ 𝑃 𝑓 (𝐷 ×𝐺). Then there exists 𝑐 in

𝐹 ×𝐺 , i.e., 𝑐 = (𝑐𝐷 , 𝑐𝐺 ) with 𝑐𝐷 ∈ 𝐷, 𝑐𝐺 ∈ 𝐺 , such that 𝑝 = 𝐸 (𝑐). By
setting 𝑝𝐷 = 𝐸𝐷 (𝑐𝐷 ) and 𝑝𝐺 = 𝐸𝐺 (𝑐𝐺 ), we have 𝑝 = 𝑝𝐷 + 𝑝𝐺 . By

definition, 𝑝𝐷 belongs to 𝑃 𝑓 (𝐷) and 𝑝𝐺 belongs to 𝑃 𝑓 (𝐺). Hence,
𝑝 ∈ 𝑃 𝑓 (𝐷) ⊕ 𝑃 𝑓 (𝐺).

Suppose that 𝑝 doesn’t belong to 𝑃 𝑓 (𝑃 𝑓 (𝐷) ⊕ 𝑃 𝑓 (𝐺)) and that

there exists 𝑝′ in 𝑃 𝑓 (𝑃 𝑓 (𝐷) ⊕𝑃 𝑓 (𝐺)) that dominates 𝑝 . We showed

above that 𝑝′ must belong to 𝑃 𝑓 (𝐷 ×𝐺). Thus both 𝑝 and 𝑝′ belong
to 𝑃 𝑓 (𝐷 ×𝐺) and 𝑝′ dominates 𝑝 , which is impossible. Therefore

𝑝′ must belong to 𝑃 𝑓 (𝑃 𝑓 (𝐷) ⊕ 𝑃 𝑓 (𝐺)) and 𝑃 𝑓 (𝑃 𝑓 (𝐷) ⊕ 𝑃 𝑓 (𝐺)) ⊆
𝑃 𝑓 (𝐷 ×𝐺).

By combining the two inclusions, we obtain that 𝑃 𝑓 (𝑃 𝑓 (𝐷) ⊕
𝑃 𝑓 (𝐺)) = 𝑃 𝑓 (𝐷 × 𝐺), where the left side is the Pareto optimal

solution from the Algorithm 2 and the right side is the Pareto

optimal solution over the whole configuration space of two nodes.

Thus, Algorithm 2 returns a full set of Pareto solutions.

□

HMOOC2: WS-based Approximation. We propose a second

technique to approximate the MOO solution over a list structure.

For each fixed 𝜽𝒄 , we apply the weighted sum (WS) method to

generate evenly spaced weight vectors. Then for each weight vector,

we obtain the (single) optimal solution for each subQ and sum the

solutions of subQ’s to get the query-level optimal solution. It can

be proved that this WS method over a list of subQs guarantees to

return a subset of query-level Pareto solutions.

Algorithm 4 describes the full procedures. The input includes

a subQ_list, which includes both subQ-level objective values and

the corresponding configurations of all subQs. ws_paris are the

weight pairs, e.g. [[0.1, 0.9], [0.2, 0.8], . . . ] for latency and cost. Line
1 initializes the query-level objective values and configurations.

Lines 3-9 address the Weighted Sum (WS) method to generate the

query-level optimal solution for each weight pair. Specifically, Lines

5-8 apply the WS method to obtain the optimal solution choice for

each subQ, and sum all subQ-level values to get the query-level

values. Upon iterating through all weights, a Pareto solution set is

derived after the necessary filtering (Line 12).

Theoretical Analysis

Lemma 1. For a DAG aggregation problem with 𝑘 objectives that

use the sum operator only, Algorithm 4 guarantees to find a non-

empty subset of query-level Pareto optimal points under a specified

𝜽𝒄 candidate.

In proving Lemma 1, we observe that Algorithm 4 is essentially

a Weighted Sum procedure over Functions (WSF). Indeed we will

prove the following two Propositions: 1) each solution returned by

WSF is Pareto optimal; 2) the solution returned by the Algorithm 4

is equivalent to the solution returned by WSF. Then it follows that

the solution returned by Algorithm 4 is Pareto optimal.

To introduce WSF, we first introduce the indicator variable 𝑥𝑖 𝑗 ,

𝑖 ∈ [1, ...,𝑚], 𝑗 ∈ [1, ..., 𝑝𝑖 ], to indicate that the 𝑗-th solution in 𝑖-th

subQ is selected to contribute to the query-level solution.

∑𝑝𝑖
𝑗=1

𝑥𝑖 𝑗 =

1 means that only one solution is selected for each subQ. Then

𝑥 = [𝑥1𝑗1 , ...𝑥𝑚𝑗𝑚 ] represents the 0/1 selection for all𝑚 subQs to

construct a query-level solution. Similarly, 𝑓 = [𝑓 1
1𝑗1

, . . . , 𝑓 𝑘
𝑚𝑗𝑚

]
represents the value of the objectives associated with 𝑥 .

So for the 𝑣-th objective, its query-level value could be repre-

sented as the function 𝐻 applied to 𝑥 :

𝐹𝑣 = 𝐻𝑣 (𝑥 ; 𝑓 ) =
𝑚∑︁
𝑖=1

𝑝𝑖∑︁
𝑗=1

𝑥𝑖 𝑗 × 𝑓 𝑣𝑖 𝑗 ,

𝑤ℎ𝑒𝑟𝑒

𝑝𝑖∑︁
𝑗=1

𝑥𝑖 𝑗 = 1, 𝑖 ∈ [1, ...,𝑚], 𝑣 ∈ [1, ...𝑘]

For simplicity, we refer to 𝐻𝑣 (𝑥 ; 𝑓 ) as 𝐻𝑣 (𝑥) when there is no

confusion. Now we introduce the Weighted Sum over Functions

(WSF) as:

argmin

𝑥
(
𝑘∑︁
𝑣=1

𝑤𝑣 ∗ 𝐻𝑣 (𝑥))

s.t.

𝑘∑︁
𝑣=1

𝑤𝑣 = 1, 𝑤𝑣 ≥ 0 for 𝑣 = 1, . . . , 𝑘

Where𝑤𝑣 is the weight value for objective 𝑣 . Next, we prove for

Lemma 1. As stated before, It is done in two steps.

Proposition A.2. The solution constructed using 𝑥 returned by

WSF is Pareto optimal.

Proof.

Assume that 𝑥∗ (corresponding to [𝐹 ∗
1
, ..., 𝐹 ∗

𝑘
] ) is the solution

of WSF. Suppose that another solution [𝐹 ′
1
, ..., 𝐹

′

𝑘
] (corresponding
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to 𝑥 ′) dominates [𝐹 ∗
1
, ..., 𝐹 ∗

𝑘
]. This means that

∑𝑘
𝑣=1𝑤𝑣 ∗ 𝐻𝑣 (𝑥 ′) is

smaller than that of 𝑥∗.
This contradict that 𝑥∗ is the solution of WSF. So there is no

[𝐹 ′
1
, ..., 𝐹

′

𝑘
] dominating [𝐹 ∗

1
, ..., 𝐹 ∗

𝑘
]. Thus, [𝐹 ∗

1
, ..., 𝐹 ∗

𝑘
] is Pareto opti-

mal. □

Proposition A.3. The optimal solution returned by the Algo-

rithm 4 is equivalent to the solution constructed using 𝑥 returned

by WSF.

Proof.

Suppose 𝑥 ′ is returned by WSF. The corresponding query-level

solution is [𝐹 ′
1
, ..., 𝐹

′

𝑘
]

𝑥 ′ = argmin

𝑥
(
𝑘∑︁
𝑣=1

𝑤𝑣 × 𝐻𝑣 (𝑥))

= argmin(
𝑘∑︁
𝑣=1

𝑤𝑣 × (
𝑚∑︁
𝑖=1

𝑝𝑖∑︁
𝑗=1

𝑥𝑖 𝑗 × 𝑓 𝑣𝑖 𝑗 ))

= argmin(
𝑚∑︁
𝑖=1

(
𝑘∑︁
𝑣=1

𝑝𝑖∑︁
𝑗=1

(𝑤𝑣 × 𝑓 𝑣𝑖 𝑗 ) × 𝑥𝑖 𝑗 ))

For the solution [𝐹 ′′
1
, ..., 𝐹

′′

𝑘
] returned by Algorithm 4, 𝑥 ′′ repre-

sents the corresponding selection. It is achieved by minimizing the

following formula:

𝑚∑︁
𝑖=1

min

𝑗∈[1,𝑝𝑖 ]
(𝑊𝑆𝑖 𝑗 )

=

𝑚∑︁
𝑖=1

min

𝑗∈[1,𝑝𝑖 ]
(
𝑘∑︁
𝑣=1

𝑤𝑣 × 𝑓 𝑣𝑖 𝑗 )

=

𝑚∑︁
𝑖=1

min

𝑗∈[1,𝑝𝑖 ]
(
𝑘∑︁
𝑣=1

𝑝𝑖∑︁
𝑗=1

(𝑤𝑣 × 𝑓 𝑣𝑖 𝑗 ) × 𝑥𝑖 𝑗 )

where𝑊𝑆𝑖 𝑗 =
∑𝑘

𝑣=1𝑤𝑣× 𝑓 𝑣𝑖 𝑗 . Given a fixed 𝑖 , 𝑥𝑖 𝑗 can only be positive
(with value 1) for one value of 𝑗 .

So, 𝑥 ′′ must solve:

𝑥 ′′ = (
𝑚∑︁
𝑖=1

argmin

𝑥𝑖 𝑗
(
𝑘∑︁
𝑣=1

𝑝𝑖∑︁
𝑗=1

(𝑤𝑣 × 𝑓 𝑣𝑖 𝑗 ) × 𝑥𝑖 𝑗 ))

= argmin

𝑥
(
𝑚∑︁
𝑖=1

(
𝑘∑︁
𝑣=1

𝑝𝑖∑︁
𝑗=1

(𝑤𝑣 × 𝑓 𝑣𝑖 𝑗 ) × 𝑥𝑖 𝑗 ))

Here, optimizing for each subQ is independent of the optimization

of the other subQs, so we can invert the sum over 𝑖 and the argmin.

Thus, 𝑥 ′ = 𝑥 ′′. Therefore, WSF and Algorithm 4 are equivalent.

□

With these two propositions, we finish the proof of Lemma 1.

Algorithm 4 varies𝑤 weight vectors to generate multiple query-

level solutions. And under each weight vector, it takes𝑂 (𝑚 · 𝑝𝑚𝑎𝑥 )
to select the optimal solution for each LQP-subtree based on WS,

where 𝑝𝑚𝑎𝑥 is the maximum number of solutions among𝑚 subQs.

Thus, the overall time complexity of one 𝜽𝒄 candidate is𝑂 (𝑤 · (𝑚 ·
𝑝𝑚𝑎𝑥 )).

HMOOC3: Boundary-based Approximation.
We now show the proof of Proposition 5.2.

Proposition 5.2 Under a fixed 𝜽𝒄 candidate, the query-level objec-

tive space of Pareto optimal solutions is bounded by its extreme

points in a 2D objective space.

Proof.

Assume that 𝐹 1𝑞 = [𝐹 1∗𝑞 , 𝐹 2−𝑞 ] and 𝐹 2𝑞 = [𝐹 1−𝑞 , 𝐹 2∗𝑞 ] are two ex-
treme points under a fixed 𝜽𝒄 , recalling that the extreme point under
a fixed 𝜽𝒄 is the Pareto optimal point with the best query-level value

for any objective. Here the superscript {1∗} means it achieves the

best in objective 1 and {2∗} means it achieves the best in objective

2. The two extreme points form an objective space as a rectangle.

Suppose that an existing query-level Pareto optimal solution

𝐹
′
𝑞 = [𝐹 1′𝑞 , 𝐹 2

′
𝑞 ] is outside this rectangle, which includes 2 scenarios.

In scenario 1, it has 𝐹 1
′

𝑞 < 𝐹 1∗𝑞 or 𝐹 2
′

𝑞 < 𝐹 2∗𝑞 , which is impossible

as extreme points already achieves the minimum values of two

objectives. In scenario 2, it has 𝐹 1
′

𝑞 > 𝐹 1−𝑞 or 𝐹 2
′

𝑞 > 𝐹 2−𝑞 , which is

impossible as 𝐹
′
𝑞 is dominated by any points inside the rectangle.

So there is no Pareto optimal solution 𝐹
′
𝑞 existing outside the

rectangle and it concludes the proof. □

We next show the proof of Proposition 5.3.

Proposition 5.3 Given subQ-level solutions, our boundary approx-

imation method guarantees to include at least 𝑘 query-level Pareto

optimal solutions for a MOO problem with 𝑘 objectives.

Proof.

Assume that 𝐹 1𝑞 , ...𝐹
𝑘
𝑞 are 𝑘 extreme points, which are Pareto

optimal and achieve the best (e.g. the lowest in the minimization

problem) query-level values of objectives 1, ..., 𝑘 among all 𝜽𝒄 con-

figurations. Suppose that an existing Pareto optimal solution 𝐹
′
𝑞 ,

distinct from the extreme points, dominates any point in 𝐹 1𝑞 , ...𝐹
𝑘
𝑞 .

𝐹
′
𝑞 must achieve a better value than 𝐹 1∗𝑞 , ...𝐹𝑘∗𝑞 in any objectives

1, ..., 𝑘 , where the superscript {1∗} means it achieves the best in

objective 1 and {𝑘∗} means it achieves the best in objective 𝑘 . which

is impossible as the extreme points already achieves the best.

So these 𝑘 extreme points cannot be dominated by any other

solutions. Thus, they are Pareto optimal and this concludes the

proof. □

A.2 Compile-time optimization
A.2.1 \𝑐 enrichment. The following theoretical result sheds light
on subQ tuning, indicating that 𝜽𝒄 derived from the subQ-level

Pareto optimal solutions can serve as a useful warm-start for gen-

erating new 𝜽𝒄 configurations.

Proposition A.4. As shown in Figure 11, for all subQs, solutions

with the same 𝜽𝒄 located in the red region cannot contribute to

query-level Pareto optimal solutions.

Proof. In any subQ 𝑠 of an arbitrary DAG, the dominated solu-

tion 𝑓 𝑠 (red area) is dominated by 𝑓 ′𝑠 with any arbitrary 𝜽𝒄 .
Given query-level solution 𝐹 built from 𝑓 𝑠 , 𝐹 ′ built from 𝑓 ′𝑠 ,

supposing 𝐹 is non-dominated with 𝐹 ′ or dominates 𝐹 ′, there must

be at least one 𝑓 𝑠 with lower latency or cost than 𝑓 ′𝑠 , which is

impossible and concludes the proof.

□
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Figure 12: Example of generating new 𝜽𝒄 candidates

To uncover unexplored 𝜽𝒄 configurations, drawing inspiration

from the crossover operation in evolutionary algorithms, we in-

troduce a heuristic method termed 𝜽𝒄 crossover. The core concept
involves utilizing the Cartesian Product (CP) operation to gener-

ate new 𝜽𝒄 candidates from the existing pool. This operation is

executed by randomly selecting a crossover location to divide the

initial 𝜽𝒄 configurations into two parts. The following example

illustrates this process.

Example In Figure 12, 𝜽𝒄1 and 𝜽𝒄2 represent initial 𝜽𝒄 candidates

obtained from the subQ-level tuning, each consisting of 8 variables

(e.g., 𝑘1, ..., 𝑘8). The values within the boxes denote the configura-

tions of 𝜽𝒄 . The blue point denotes a randomly generated crossover

location. Based on this location, 𝜽𝒄1 and 𝜽𝒄2 are divided into two

parts: 𝑘1, 𝑘2, 𝑘3 and 𝑘4, 𝑘5, 𝑘6, 𝑘7, 𝑘8, delineated by a blue rectangle.

A Cartesian Product (CP) is then applied to these two parts. In this

example, there are two distinct configurations for 𝑘1, 𝑘2, 𝑘3 and two

distinct configurations for 𝑘4, 𝑘5, 𝑘6, 𝑘7, 𝑘8. Consequently, the CP

generates four configurations, represented as 𝜽𝒄3 to 𝜽𝒄6. It is note-
worthy that 𝜽𝒄 crossover generates new 𝜽𝒄 configurations (e.g., 𝜽𝒄4,
𝜽𝒄5) without discarding the initial 𝜽𝒄 candidates (e.g., 𝜽𝒄3, 𝜽𝒄6).

Analysis on Boundary-based Approximation
Since different 𝜽𝒄 values result in diverse total resources and

cover various regions of the Pareto frontier, it’s noteworthy that

all DAG optimization methods produce the same effective set, as

confirmed by Figure 13. In scenarios with multiple 𝜽𝒄 candidates,

the boundary-based method achieves comparable hypervolume to

the others.

Experiments
Analysis on Query-control

It’s worth noting that query-control cannot achieve a higher

upper-bound than the finer-control. To verify this, we implemented

a smaller search space (each parameter having only 2 values) for

WS to fully explore query-control, where WS performs the best

among all baselines for both TPCH and TPCDS. Figure 14 displays

the hypervolume of WS under different numbers of samples, with

blue and orange bars representing hypervolume of finer-control

and query-control, respectively. It is observed that as the number of

samples increases, the hypervolume of query-control plateaus at 1M

samples (89%), while the hypervolume of finer-control continues

to improve (90%), illustrating the necessity of finer-control in our

problem.

A.3 Additional Materials for Runtime
Optimization

A.3.1 More on 𝜽𝑝 and 𝜽𝑠 Aggregation. Ideally, one could copy 𝜽𝑝
and 𝜽𝑠 from the initial subQ, allowing the runtime optimizer to

adjust them by adapting to the real statistics.

Given the constraint that Spark takes only one copy of 𝜽𝑝 and

𝜽𝑠 at query submission time, we intelligently aggregate the fine-

grained 𝜽𝑝 and 𝜽𝑠 from compile-time optimization to initialize the

runtime process. In particular, Spark AQE can convert a sort-merge

join (SMJ) to a shuffled hash join (SHJ) or a broadcast hash join (BHJ),

but not vice versa. Thus, imposing high thresholds (𝑠3, 𝑠4 in Table 1)

to force SHJ or BHJ based on inaccurate compile-time cardinality

can result in suboptimal plans (as shown in Figure 3(b)). On the

other hand, setting these thresholds to zero at SQL submission

might overlook opportunities for applying BHJs, especially for joins

rooted in scan-based subQs with small input sizes. To mitigate this,

we initialize 𝜽𝑝 with the smallest threshold among all join-based

subQs, enabling more informed runtime decisions. Other details

of aggregating 𝜽𝑝 and 𝜽𝑠 are in Appendix A.3. We also cap these

thresholds (10MB for broadcast threshold and 0MB for shuffle hash

threshold) at their default values to ensure BHJs are not missed for

small scan-based subQs.

A.3.2 More on Pruning Optimization Requests. To address this,

we established rules to prune unnecessary requests based on the
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Table 6: (Selected) Spark parameters in three categories

𝜽𝑐 Context Parameters

𝑘1 spark.executor.cores
𝑘2 spark.executor.memory
𝑘3 spark.executor.instances
𝑘4 spark.default.parallelism
𝑘5 spark.reducer.maxSizeInFlight
𝑘6 spark.shuffle.sort.bypassMergeThreshold
𝑘7 spark.shuffle.compress
𝑘8 spark.memory.fraction

𝜽𝑝 Logical Query Plan Parameters

𝑠1 spark.sql.adaptive.advisoryPartitionSizeInBytes
𝑠2 spark.sql.adaptive.nonEmptyPartitionRatioForBroadcastJoin
𝑠3 spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold
𝑠4 spark.sql.adaptive.autoBroadcastJoinThreshold
𝑠5 spark.sql.shuffle.partitions
𝑠6 spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes
𝑠7 spark.sql.adaptive.skewJoin.skewedPartitionFactor
𝑠8 spark.sql.files.maxPartitionBytes
𝑠9 spark.sql.files.openCostInBytes

𝜽𝑠 Query Stage Parameters

𝑠10 spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor
𝑠11 spark.sql.adaptive.coalescePartitions.minPartitionSize
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with smaller searching space

runtime semantics of parametric rules: LQP parametric rules are

used to decide join algorithms and QS parametric rules are used

to re-balance the data partitions in a post-shuffle QS. Therefore,

we bypass requests for non-join operations and defer requests for

LQP containing join operators until all input statistics are available,

thereby avoiding decisions based on inaccurate cardinality estima-

tions. Additionally, we skip all the scan-based QSs and only send

the requests when the input size of a QS is larger than the target

partition size (configured by 𝑠1). By applying the above rules, we

substantially reduce the total number of optimization calls by 86%

and 92% for TPCH and TPCDS respectively.

B ADDITIONAL EXPERIMENTAL DETAILS
B.1 More Setup
B.1.1 Hardware. We use two 6-node Spark 3.5.0 clusters with run-

time optimization plugins. Each node is CentOS-based with 2 16-

core Intel Xeon Gold 6130 processors, 768GG of RAM, and RAID

disks, connected with 100Gbps Ethernet.

B.1.2 Parametric Optimization Rules. Figure 15 illustrates the trans-
formations of a collapsed LQP and a runtime QS, which both pass

through a pipeline of parametric rules (blue) and non-parametric

rules (gray).

B.1.3 Spark Parameters Details. We list our 19 selected Spark pa-

rameters in Table 1, which are categorized into three groups: context

parameters, logical query plan parameters, and query stage param-

eters. The default configuration is set to Spark’s default values.

B.2 Specific Knob Concerns

spark.sql.adaptive.enable=true The parameter was introduced

in Spark 1.6 and has been set to true by default since Spark 3.2.

We have chosen to enable it for two main reasons. First, enabling

adaptive query execution (AQE) allows us to perform parameter

tuning at the stage level. Specifically, our runtime optimizer could

fine-tune the runtime parameters (at the stage level) while AQE
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Figure 16: Repeated Runs of TPCH Q3 with the Same Configura-
tion. In Figure 16(a), QS4 runs logically ahead of QS2 and QS3 and
finishes before running QS1. Therefore, QS1 runs by itself without
any resource sharing, and the query takes 49.3s. In Figure 16(b), QS2
and QS3 run logically ahead of QS4, and hence QS1 and QS4 run in
parallel by sharing the resources with a 33.7s query latency.

re-optimizes the query plan based on the actual runtime statistics in

the middle of query execution. Second, enabling AQE improves the

robustness of query latency. When AQE is disabled, the DAGSched-

uler asynchronous converts the entire query to a DAG of stages.

Consequently, parallel stages can be randomly interleaved during

query execution, leading to unpredictable query latencies. For in-

stance, Figure 16 demonstrates that disabling AQE can result in

different stage interleaving patterns, causing a significant 46% in-

crease in query latency. When AQE is enabled, stages are wrapped

in QueryStages that are synchronously created. As a result, the

stage interleaving patterns are consistent for running one query,

making the query performance more stable and predictable.

spark.locality.wait=0s The default value of the parameter is 3s,

which specifies the wait time for launching a data-local task be-

fore giving up and launching it on a less-local node. However, the

waiting behavior can introduce instability in query performance

due to the randomness of locality detection. As demonstrated in

Figure 17(a) and Figure 17(b), the latency of a stage can vary sig-

nificantly (changing from 11.7s to 18.4s) when different locality

detection methods are employed. To ensure a stable query perfor-

mance in our workload, we have fixed the spark.locality.wait
parameter to 0s, thereby avoiding the waiting time for locality and

achieving consistent and better query performance as shown in Fig-

ure 17(c). It is worth noting that in the production environment [28],

the impact of locality is mitigated due to the high-speed network

cards, which aligns with a near-zero waiting time.

spark.sql.adaptive.coalescePartitions.parallelismFirst=false
We respect the recommendation on the Spark official website and

set this parameter to false such that the advisory partition size will

be respected when coalescing contiguous shuffle partitions.

spark.sql.adaptive.forceOptimizeSkewedJoin=false We follow

the default setting for the parameter and avoid optimizing the

skewed joins if it requires an extra shuffle. However, if needed, we

can set it to true and adjust our tuning process to consider 𝑠5 - 𝑠7
as three additional plan-dependent parameters.

B.3 More Integration Evaluation
The framework of compile-time and runtime optimization is shown

in Figure 18. We show per query latency comparison with a strong

speed preference in TPC-H in Figure 19.
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Figure 17: The end-to-end stage latency comparison over different settings for spark.locality.wait.
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Figure 18: Compile-time Optimization and Runtime Optimization
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Figure 19: Per-query latency comparison with a strong speed preference in TPCH
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