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Modeling Performance over 
TPC-H and TPC-DS,  each with 50K traces

High Accuracy
• Weighted Mean Absolute Percentage Error (WMAPE) 
• P50Error, P90Error up to 0.65/0.19 for latency/shuffle size
• Pearson Correlation close to 1.

High Inference 
Throughput

• 60K-462K per second
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Multi-channel input framework [1]
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Trend 1: Adaptive Query Execution (AQE)Big Data Query Processing

Big Data Systems 
(e.g., Spark)

Parameter Tuning 
is Important
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Adaptive Query Execution 
Re-optimizes/updates query plan based on 
runtime statistics during execution.

SQL Query Plan
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What is needed for AQE:

Trend 2: Cost Performance Reasoning
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[1]: Regina Marler and J S Arora. 2004. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 
26, 6 (2004), 369–395.

Challenge 2: High Overhead of Optimization

Challenge 1: Complex Parameter Control

Benefits Over Query-Level MOO Against the DefaultModeling Techniques and Results Adaptivity Comparison to SO with Fixed Weights

Spark Optimizer 
for 

Parameter Tuning Casts the tuning problem in the setting 
of multi-objective optimization to better 
adapt to user cost-preference needs

Controls ALL parameters in the new 
architecture of adaptive query execution
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Decision variables

Non-decision variables

Logical Query Plan!"#
Input characteristics (# rows, size)$
Distribution of input partitions%
Runtime status, encoded by statistics of the 
running tasks in parallel stages!

Large Searching Space and High Overhead
[1]: Song, Fei, et al. "Spark-based Cloud Data Analytics using Multi-Objective Optimization." 2021 IEEE 37th International Conference on Data 
Engineering (ICDE). IEEE Computer Society, 2021.

SubQ Tuning
• MOO Methods[1]
• Solve in parallel 
• Effective !! Generation

Recommendation
• Weighted Utopia Nearest 

(WUN) method[1]

Cost 
(CPU-hour + mem-hour + shuffle size)
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DAG Aggregation
• Divided-and-Conquer
• WS-based Approx.
• Boundary-based Approx.
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Prune unnecessary requests
• Bypass LQP when no join 
• Bypass LQP with uncleared dependency 
• Skip scan-based QS
• Skip QS with small input size.
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Reduce 86-92% requests!
Cost 0.3-0.4s per query

Spark Plugins for Runtime Optimization
• Re-compile Spark to support adding tuning 

strategies before applying opt. rules
• Server-side: MOO solving
• Client-side: update $! and $"

1. MO-WS: a total ↓ of 18-25% latency with an average solving time of 2.6-15s
2. Ours:  a total ↓ of 63-65% latency with an average solving time of 0.7-0.8s

• Multi-grained compile-time optimization (↓ 61% with 0.41s)

Multi-Objective Weighted Sum, Coarse-grained TuningMO-WS[1]

Ours, Compile-time, Fine-grained TuningHMOOC3

Ours, Compile-time/Runtime, Fine-grained TuningHMOOC3+

[1]: Regina Marler and J S Arora. 2004. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 
26, 6 (2004), 369–395.
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TPC-H TPC-DS

Prioritize improving 
query speed

1. Ours: Up to 55-59% ↓latency and up to 10-22% ↓cost
2. SO-FW: at most 14-34% ↓latency and rare ↓cost

Reduce to a Single Objectives with Fixed WeightsSO-FW

Hybrid, Multi-granularity tuning (with multi-query plan search)HMOOC3+*

An increasing 
demand of 

saving latency

Fails 
to adapt

Performance-cost savings against default configuration 
over different preferences

Superior adaptivity 
Not adapting well

GOAL Solution: Hybrid Multi-Granularity Tuning

Solution: Compile-Time Optimization Solution: Runtime Optimization

Example of Tuning TPC-H Q9
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SMJ: Sort-Merge Join
BHJ: Broadcast Hash Join
SHJ: Shuffled Merge Join

Estimated: 40M
Actual: 4.5G

E2E Performance Comparison for Individual Queries

Latency of Queries in TPC-H Latency of Queries in TPC-DS

Thanks For Your Attention

v Code Implementation
• [Client-side] Spark plugins to support runtime tuning: https://t.ly/xMTxu 
• [Server-side] Modeling and MOO algorithms: https://t.ly/XqfL1 

v Potential Future Work
• Extended to other systems who support runtime adaptivity with observed 

statistics (e.g., Presto, Greenplum, etc.)

v Contact Me
• Email: chenghao@cs.umass.edu
• I am expecting a full-time job in 2024/2025

Résumé WeChat

11 𝜶	choices 0, 0.1, … , 1.0  => 2 distinct solutions
101 𝜶	choices 0, 0.01, … , 1.0  => 3 distinct solutions
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