
[1]: Lyu, Chenghao, et al. "Fine-grained modeling and optimization for intelligent resource management in big data processing." Proceedings of the
VLDB Endowment 15.11 (2022): 3098-3111.

Modeling Performance over
TPC-H and TPC-DS, each with 50K traces

High Accuracy
• Weighted Mean Absolute Percentage Error (WMAPE)
• P50Error, P90Error up to 0.65/0.19 for latency/shuffle size
• Pearson Correlation close to 1.

High Inference
Throughput

• 60K-462K per second

!!
!"
!#

"
#
$

Graph
Transformer

Network
Regressor !"

Input characteristics (# of rows, sizes)

Distribution of input partitions

Statistics of running tasks in parallel stages

Estimated
Or

Observed

Context Parameters

LQP Parameters (empty for runtime QS)

QS Parameters

Multi-channel input framework [1]

A Spark Optimizer For Adaptive, Fine-Grained Parameter Tuning

Chenghao Lyu1, Qi Fan2, Philipee Guyard2, Yanlei Diao1,2,
1University of Massachusetts Amherst, 2Ecole Polytechnique,

Trend 1: Adaptive Query Execution (AQE)Big Data Query Processing

Big Data Systems
(e.g., Spark)

Parameter Tuning
is Important

180+
parameters

In Spark
Resource
Allocation

Degree of
Parallelism

Shuffle
Behaviors

SQL-related
Decisions …

TPCH-Q9

La
te
nc
y

Default: 145s

Tuned: 37s

74%

Adaptive Query Execution
Re-optimizes/updates query plan based on
runtime statistics during execution.

SQL Query Plan

Parameters for
context setup and execution
(resource allocation, degree of

parallelisms, shuffle behaviors, …)

A

Parameters for
plan generation B

t0

Query Plan t1

Query Plan t2

Query Plan t3

B

B

B
BA BB B

Existing work on parameter tuning:
BA

What is needed for AQE:

Trend 2: Cost Performance Reasoning

SO
Solver Solution

Cost

Performance

!

"-!

Single
Objective

(SO)

Prior Work (Multi-Objective Weighted Sum, MO-WS[1])

Poor Coverage of
the Pareto front [1]

TPC-H Q2

Union over
different !

choices

Ideal Pareto
Frontier

[1]: Regina Marler and J S Arora. 2004. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization
26, 6 (2004), 369–395.

Challenge 2: High Overhead of Optimization

Challenge 1: Complex Parameter Control

Benefits Over Query-Level MOO Against the DefaultModeling Techniques and Results Adaptivity Comparison to SO with Fixed Weights

Spark Optimizer
for

Parameter Tuning Casts the tuning problem in the setting
of multi-objective optimization to better
adapt to user cost-preference needs

Controls ALL parameters in the new
architecture of adaptive query execution

5

…
Spark Runtime Engine

Logical
Query Plan

Physical
Query Plan

scan

fltr

pj

scan

fltr

pj

join

scan

fltr

pj

join

pj

agg

sort

pj

limit

pj

Ex
sort

pj

Ex
sort

SMJ
pj

Ex
sort

SMJ
pj

HashAgg

TakeOrdered&PJ

scan
fltr

scan
fltr

scan
fltr

pj

Ex
sort

HashAgg

QS1 QS2

QS3

QS4

QS5

!!

!!"

!!#

!!$

!!%

!!&

Query Stage (QS)

!"
Rebalance

Data Partition

!#

Spark Context
- Resources
- Shuffle

Behavior
- Memory

Management

Context Parameters!!

Query Stage Parameters!"
Query Plan Parameters!#

Determined at
query submission

!"$,!"%, !"&, …
!#$, !#%, !#&, …Fine-grained

Fine-grained

!!Coarse-grained

!!
!!$
!!%
…

1

With AQE

Best tuned
at runtime

Apply !!2

Initial QS2
Initial QS1

Compile-time
Optimizer

Solve !!∗, !#, !$

SQL
1

Logical Query
Plan (LQP)

Physical Query
Plan (PQP)

Apply !"3

Query Stage (QS) Queue

Execution

4

7Collapsed
LQP (!"#)

5

Updated
PQP

Runtime
Optimizer

Solve !$∗ for QS
Solve !#∗ for LQP

6

9

Apply !&

Apply !'

8

10

Runtime
QS

Compile time => Optimal !!∗,
with initial {##} and {#$},

based on estimated statistics

Runtime => Optimal !%∗ 	and !&∗
in each AQE step, given !!∗,
based on runtime statistics

Optimized QS
…

k objectives

Decision variables

Non-decision variables

Logical Query Plan!"#
Input characteristics (# rows, size)$
Distribution of input partitions%
Runtime status, encoded by statistics of the
running tasks in parallel stages!

Large Searching Space and High Overhead
[1]: Song, Fei, et al. "Spark-based Cloud Data Analytics using Multi-Objective Optimization." 2021 IEEE 37th International Conference on Data
Engineering (ICDE). IEEE Computer Society, 2021.

SubQ Tuning
• MOO Methods[1]
• Solve in parallel
• Effective !! Generation

Recommendation
• Weighted Utopia Nearest

(WUN) method[1]

Cost
(CPU-hour + mem-hour + shuffle size)

La
te

nc
y

Utopia

Query Stage

Ex
sort

Ex
sort

SMJ
pj

!!

"!, ""#, "$#
join

pj

SubQ
Compile-time SubQuery

subQ4

subQ1

subQ5

subQ3

subQ2

∑

!!∗
{!%∗}
{!&∗}

!!∗
{!%∗}
{!&∗}

DAG Aggregation
• Divided-and-Conquer
• WS-based Approx.
• Boundary-based Approx.

Query-level
Pareto Set

Pareto
Set 4

Pareto
Set 1

Pareto
Set 5

Pareto
Set 3

Pareto
Set 2

"", "#$, "%$

"", "#&, "%&

"", "#', "%'

"", "#(, "%(

"", "#), "%)

shared Independent

Prune unnecessary requests
• Bypass LQP when no join
• Bypass LQP with uncleared dependency
• Skip scan-based QS
• Skip QS with small input size.

!!
min !"#$!"#$

%&$'()*!"#$

!"
min !"#$"%$

%&$'()*"%$

QS
finished

Execution

4

7
Collapsed
LQP (!"#)

5

Updated
PQP

Runtime
Optimizer

Solve !!∗ for QS
Solve !#∗ for LQP

6

9

Apply !%

Apply !&

8

10 Runtime
QS

…
Optimized QS

Initial QS

No. of
optimization

requests

No. of
runtime

QS

No. of
completed

QS
+=

Reduce 86-92% requests!
Cost 0.3-0.4s per query

Spark Plugins for Runtime Optimization
• Re-compile Spark to support adding tuning

strategies before applying opt. rules
• Server-side: MOO solving
• Client-side: update $! and $"

1. MO-WS: a total ↓ of 18-25% latency with an average solving time of 2.6-15s
2. Ours: a total ↓ of 63-65% latency with an average solving time of 0.7-0.8s

• Multi-grained compile-time optimization (↓ 61% with 0.41s)

Multi-Objective Weighted Sum, Coarse-grained TuningMO-WS[1]

Ours, Compile-time, Fine-grained TuningHMOOC3

Ours, Compile-time/Runtime, Fine-grained TuningHMOOC3+

[1]: Regina Marler and J S Arora. 2004. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization
26, 6 (2004), 369–395.

HMOOC3+HMOOC3MO-WSHMOOC3+HMOOC3MO-WS

65%61%25%63%61%18%Total Lat
Reduction

0.800.41150.700.412.6Avg Solving
Time (s)

TPC-H TPC-DS

Prioritize improving
query speed

1. Ours: Up to 55-59% ↓latency and up to 10-22% ↓cost
2. SO-FW: at most 14-34% ↓latency and rare ↓cost

Reduce to a Single Objectives with Fixed WeightsSO-FW

Hybrid, Multi-granularity tuning (with multi-query plan search)HMOOC3+*

An increasing
demand of

saving latency

Fails
to adapt

Performance-cost savings against default configuration
over different preferences

Superior adaptivity
Not adapting well

GOAL Solution: Hybrid Multi-Granularity Tuning

Solution: Compile-Time Optimization Solution: Runtime Optimization

Example of Tuning TPC-H Q9

Scan1Scan2

Join1Scan3

Join2Scan4

Join3Scan5

Join4Scan6

Join5

Default MO-WS HMOOC3+

SMJ SMJ SHJ

SMJ SMJ BHJ

SMJ BHJ BHJ

BHJ BHJ BHJ

SMJ BHJ SHJ

SMJ: Sort-Merge Join
BHJ: Broadcast Hash Join
SHJ: Shuffled Merge Join

Estimated: 40M
Actual: 4.5G

E2E Performance Comparison for Individual Queries

Latency of Queries in TPC-H Latency of Queries in TPC-DS

Thanks For Your Attention

v Code Implementation
• [Client-side] Spark plugins to support runtime tuning: https://t.ly/xMTxu
• [Server-side] Modeling and MOO algorithms: https://t.ly/XqfL1

v Potential Future Work
• Extended to other systems who support runtime adaptivity with observed

statistics (e.g., Presto, Greenplum, etc.)

v Contact Me
• Email: chenghao@cs.umass.edu
• I am expecting a full-time job in 2024/2025

Résumé WeChat

11 𝜶	choices 0, 0.1, … , 1.0 => 2 distinct solutions
101 𝜶	choices 0, 0.01, … , 1.0 => 3 distinct solutions

https://t.ly/xMTxu
https://t.ly/XqfL1
mailto:chenghao@cs.umass.edu

